

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program : B.Sc.

Proposed Subject: Mathematics

Semester VI

Credit Based Semester and Grading System (CBGS) with effect from the academic year 2020-21

T.Y.B.Sc. Mathematics Syllabus

Academic year 2020-2021

Semester VI				
Course Code	Course Title	Credits	Lectures /Week	
SMAT601	Real and Complex Analysis	4	3	
SMAT602	Abstract Algebra-II	4	3	
SMAT603	Metric Spaces-II	4	3	
SMAT604	Data Analytics - II	4	3	
SMAT6PR1	Practical I (Based on SMAT601 and 602)	4	6	
SMAT6PR2	Practical II (Based on SMAT603 and 604)	4	6	

Course: SMAT601	Real and Complex Analysis (No. of Credit: 4 , No. of Lectures / week	::3)
Course O	bjectives	
concepts o course has objective o	se starts with sequence and series of function. Further in this paper f differentiation and integration are extended on complex field. This a wide variety of application in physics and engineering. The main of the course is to make students competent in solving real world cal problem.	
Course O	utcome	
This cours	se can help students to pursue research in applied Mathematics	
	Sequence and series of functions	15 L
Unit I	 (a) Point wise and uniform convergence of sequences of functions, consequences of uniform convergence (b) Convergence and uniform convergence of series of functions, integration and differentiation of series of functions. 	
Unit II	Introduction to Complex Analysis	15 L
	 (a) Review of complex numbers: Complex plane, polar coordinates, exponential map, powers and roots of complex numbers, De Moivre's formula. 	
	(b) Continuous functions f: $C \rightarrow C$, real and imaginary parts. Derivative of f: $C \rightarrow C$, comparison between differentiability in real and complex sense.	
	 (c) Cauchy-Riemann equations, sufficient conditions for differentiability, analytic functions. Harmonic Conjugate. 	
Unit III	Complex power series	15 L
	 (a) Line integral f(z) over z - z₀ = r. The Cauchy integral formula. Taylor's theorem for analytic function. (b) Mobius transformation, Power series of complex number, 	
	 uniqueness of series representation, examples. (c) Isolated singularity and definition of Laurent series, Type of isolated singularities defined using Laurent series expansion (d) Statement of residue theorem and calculation of residue. 	

Reference

- R.R. Goldberg, Methods of Real Analysis, Oxford and International Book House (IBH) Publishers, New Delhi.
- Ajit Kumar, S. Kumaresan, Introduction to Real Analysis.
- J. W. Brown and R. V. Churchill, Complex variables and applications
- J. W. Brown and R.V. Churchill, Complex analysis and Applications

Additional References:

- Robert E. Greene and Steven G. Krantz, Function theory of one complex variable.
- T. W. Gamelin, Complex Analysis,

Course: SMAT602	Abstract Algebra-II (Credits : 04 Lectures/Week: 03)	
Objective	5:	
of mathem	y is an extension of group theory and have many applications in wide atics, cryptography, coding theory, computer science and cal/theoretical physics.	e areas
Outcomes	:	~
• Studen	ts will know the fundamental concepts in ring theory such as ideals,	quotien
	ntegral domains, fields, polynomial rings.	1
• They w	ill be able to extend the results from group theory to study the prop	erties of
rings a	nd fields.	-
	I WILL CAN	
Unit I	Ring Theory	15 L
	• Definition and examples, zero divisors, units and basic	
	properties.	
	• Commutative rings, subrings, integral domains, fields with	11
	examples. Every field is an integral domain. Every finite	
	integral domain is a field.	11
	 Characteristic of a ring, an integral domain and a field. 	1
	• Ideals and operation of ideals. Quotient rings.	/
	• Principal ideal, prime ideal, maximal ideal. Characterization of	
	prime and maximal ideals in terms of quotient rings.	
Unit II	Homomorphism and Isomorphism of Rings	15 L
	131 /15/	
	• Ring homomorphism, kernel and image of a ring	
	homomorphism. Properties of ring homomorphism	
	• Pull and Pushback of ideals. Factor theorem.	
	• First Isomorphism theorem, Second Isomorphism theorem,	
	Third Isomorphism theorem for rings	
	Correspondence theorem.	
	• Divisibility in an integral domain. Prime and irreducible	
	elements in an integral domain.	
Unit III	Polynomial Rings and Factorization	15 L
	• Polynomial rings R[x] where R is an integral domain or a field	
	with examples. Units and associates in $F[x]$ where F is a field	
	 Division algorithm, factor theorem in F[x].Ideals in F[x]. 	

٠	Reducible and irreducible polynomials. Prime and maximal	
	ideals. Eisenstein's criterion for irreducibility of polynomials	
	over Z.	
٠	Definition of ED,PID,UFD with examples. Theorem to prove	
	that ED implies PID implies UFD. Examples to show that the	
	converse is not true.	

References:

- Contemporary abstract algebra by Joseph A. Gallian , 4th edition, Narosa
- Abstract Algebra by Dummit and Foote, Wiley India Pvt. Ltd.

Additional References:

- Basic abstract algebra by Bhattacharya, Jain, Nagpaul, 2nd edition, Cambridge University Press
- A first course in abstract algebra by J.B.Fraleigh, Narosa

SMAT603	Metric Spaces-II (Credits: 04, Lectures/Week: 03)	
Objective	ls:	
	e primary aims of this course is to introduce some of the most impo- al concepts like continuity, compactness and connectedness in a me	
Outcome		
	burse offers a detailed study of compact subsets (of a metric space ted spaces which occupy a central position in topology.) and
• Also, t	his course provides a different perspective of real analysis and a	at the
	me it builds a preparatory ground for a general topology course.	
	ations of continuous functions are pervasive in science and enginee	
	Borel theorem, path connectedness spaces are widely used in ap	plied
mather	natics, Physics.	
Unit I	Continuity	15 L
	(a) Definition of a continuous function on a metric space. Characterization of continuity at a point in terms of	1
	sequences, open sets.	
	(b) Characterization in terms of inverse image of open sets	3
	and closed sets.	γ,
	(c) Algebra of continuous functions in metric spaces	11
	(d) Uniform continuity in a metric space, definition and	1
	examples (emphasis on \mathbb{R})	1
Unit II	Compactness	15 L
	(a) Definition of a compact set in a metric space, its examples.	
	(b) Results such as i) Continuous image of a compact set is	
	compact, ii) compact subsets are closed, iii) a continuous	
	function on a compact set is uniformly continuous.	
	(c) Characterization of compact sets in \mathbb{R}^n : i) Heine-Borel	
	(c) Characterization of compact sets in \mathbb{R}^n : i) Heine-Borel property, ii) Closed and boundedness property	
	 (c) Characterization of compact sets in Rⁿ: i) Heine-Borel property, ii) Closed and boundedness property (d) Sequential compactness property, Bolzano-Weierstrass 	
	(c) Characterization of compact sets in \mathbb{R}^n : i) Heine-Borel property, ii) Closed and boundedness property	
Unit III	 (c) Characterization of compact sets in Rⁿ: i) Heine-Borel property, ii) Closed and boundedness property (d) Sequential compactness property, Bolzano-Weierstrass 	15 L
Unit III	 (c) Characterization of compact sets in ℝⁿ: i) Heine-Borel property, ii) Closed and boundedness property (d) Sequential compactness property, Bolzano-Weierstrass property Connectedness 	15 L
Unit III	 (c) Characterization of compact sets in Rⁿ: i) Heine-Borel property, ii) Closed and boundedness property (d) Sequential compactness property, Bolzano-Weierstrass property Connectedness (a) Definition of connected metric space and its examples. 	15 L
Unit III	 (c) Characterization of compact sets in Rⁿ: i) Heine-Borel property, ii) Closed and boundedness property (d) Sequential compactness property, Bolzano-Weierstrass property Connectedness 	15 L

connected if and only if every continuous function from X
to $\{0,1\}$ is a constant function. Continuous image of a
connected set is connected.
(c) Definition of path connected space and its examples.
(d) Path connectedness in \mathbb{R}^n .

References:

- Topology of Metric spaces, S. Kumaresan, Narosa publishing house, 2nd edition, 2011
- Metric spaces, Pawan Jain, Khalil Ahmad, Narosa publishing house, 2nd edition, 2004

Additional References:

- First Course in Metric Spaces, B. K. Tyagi, Cambridge University Press, 2nd edition,2010
- Principles of Mathematical Analysis, W. Rudin, McGraw-Hill book Company, 3rd edition, 1976
- Mathematical Analysis, T. Apostol, Narosa Publishing House, 2nd edition, 2002
- Metric Spaces, E. T. Copson, Universal book stall New Delhi, 3rd edition, 1996

Data Analytics (Credits : 04 Lectures/Week: 3)

Course: SMAT604

Course Objectives

This course introduces students to representations, techniques, and architectures used to build applied systems and to account for intelligence from a computational point of view. Students learn applications of rule chaining, heuristic search, and other problem-solving paradigms. They also learn applications of identification trees, neural nets, genetic algorithms and other learning paradigms. The course introduces contributions of vision, language, and story-understanding systems to human-level intelligence.

Course Outcomes

- Gain familiarity with basic approaches to problem solving and inference and areas of application
- Demonstrate familiarity with basic and advanced approaches to exploiting regularity in data and areas of application
- Demonstrate familiarity with computational theories of aspects of human intelligence and the role of those theories in applications
- Gain familiarity with techniques for improving human learning and influencing human thought

Unit I	Introduction to Artificial Intelligence	15 L	
	Introduction and scope, Reasoning : Goal Trees and problem solving,		
	Goal Trees and Rule Based Expert Systems, Search: Depth- first, hill		
	climbing, beam, Optimal branch and bound, A*		
Unit II	Introduction to Neural Networks	15 L	
	Neurons and Neural Networks, Introduction to Artificial Neural		
	Networks, Gradient descent, forward and Back propagation, Vanishing		
	Gradient, Activation functions, Convolution Neural Networks, Recurrent Neural Networks		
Unit III	Evolutionary Computation	15 L	
	Introduction to Evolutionary Computation, Genetic Algorithms, Genetic		
	Programming, Evolutionary Programming, Evolution Strategies,		
	Differential Evolution, Cultural Algorithms. Introduction to Deep		
	Learning.		
Reference	es		
Sons P	ntational Intelligence- An Introduction: Andries P. Engelbrecht, John Wil ublications (Second Edition) 2007. ial Intelligence: Pearson Education, Patrick Henry Winston, 2002	ley &	

Additional References

- Computational Intelligence And Feature Selection: Rough And Fuzzy Approaches, Richard Jensen Qiang Shen, IEEE Press Series On Computational Intelligence, A John Wiley & Sons, Inc., Publication, 2008.
- Computational Intelligence And Pattern Analysis In Biological Informatics, (Editors).
 Ujjwal Maulik, Sanghamitra Bandyopadhyay, Jason T. L.Wang, John Wiley & Sons, Inc, 2010.
- Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition 1st Edition, Sandhya Samarasinghe, Auerbach Publications, 2006.
- Introduction to Evolutionary Computing (Natural Computing Series) 2nd ed, A.E. Eiben, James E Smith, Springer; 2015.
- Artificial Immune System: Applications in Computer Security, Ying Tan, Wiley- IEEE Computer Society, 2016.

Semester VI – Practical

Course: Practical I (Based on SMAT 601 and 602) (Credits 4 : Practical/Week:6 SMAT6PR1
Problems base on SMAT601
1. Pointwise & Uniform convergence of sequence of function
2. Pointwise & Uniform convergence of series of function
3. Limits, continuity and derivative of function of complex variable.
4. Analytic function, Finding harmonic conjugate, Mobius transformation.
5. Cauchy integral formula, Taylor series, Power series
6. Singularities of analytic function and Laurent series expansion
Problems base on SMAT602
1. Rings, Integral domains, Fields
2. Ideals and Quotient rings
3. Homomorphism and Isomorphism of rings
4. Prime and maximal ideals
5. Reducible and Irreducible polynomials
6. ED,PID,UFD
Course: Practical II (Based on SMAT 603 and 604) (Credits 4 : Practical/Week:6
Course: SMAT6PR2 Practical II (Based on SMAT 603 and 604) (Credits 4 : Practical/Week:6
Problems base on SMAT603
1. Continuous functions on metric spaces
2. Uniform continuity
3. Compact sets in a metric space
4. Compactness in \mathbb{R}^n (emphasis on \mathbb{R}, \mathbb{R}^2)
5. Connected sets in a metric space
6. Path connectedness, convex sets
Problems base on SMAT604
1. Implement Goal Trees and Rule Based Expert Systems
2. Implement Depth- first, hill climbing, beam, Optimal branch and bound, A^* algorithms

- **3.** Implement feed forward and backward neural network for a given data.
- 4. Implement Radial Basis Function neural network with gradient descent.
- **5.** Implement evolution strategy algorithm.
- 6. Implement general differential evolution algorithm.

Evaluation Scheme

Evaluation scheme for Theory courses

I. Continuous Assessment (C.A.) - 40 % - 40 Marks

Sr. No.	Evaluation type	Marks
1.	C.AI : It will be conducted either using any open source learning management system or by taking a test	20
2.	C.AII : Assignments / Project (maximum 5 students in a group)	20

II. Semester End Examination (SEE) - 60 % - 60 Mark , Duration 2 Hrs

Theory Question Paper Pattern:-

1. . I.

	All Questions are Compulsory				
Question	Options	Based on	Marks		
1.	Any 3 out of 5	Unit I	15		
2.	Any 3 out of 5	Unit II	15		
3.	Any 3 out of 5	Unit III	15		
4.	Any 3 out of 5	Unit IV	15		

Evaluation scheme for Practical courses- 200 Marks

Each student will maintain a Journal. After every practical, student will upload his practical in the form of documents along with the screen shots of output on any LMS.

-

Sr. No.	Heading	Marks
1.	Journal	20
2.	Practical I (Based on SMAT601 and SMAT 602)	80
3	Practical II (Based on SMAT603 and SMAT 604)	80
4	Viva	20
	Total	200