

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE

& J.T.LALVANI COLLEGE OF COMMERCE

(AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: B.Sc.

Proposed Course: Physics (Applied Component)

Analog Circuits, Instruments and Consum Appliances

Semester - V

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2020-21

Semester V					
Course Code	Course Title	Credits	Lectures /Week		
SPHY5AC	Analog Circuits, Instruments and Consumer Appliances	2.5	4		
SPHY5ACPR	Electronic instrumentation practical I	2.5	4		

Course Code	Analog Circuits, Instruments and Consumer Appliances (Credits :2.5, Lectures/		
SPHY5AC	week : 4)		
Course descrip	tion:		
To intro	duce students to electronic instrumentation principles and its applicatio	ns	
Objectives			
1. Unde	erstand the working of transducers, signal generation and conditioning,	data	
acquisiti	on systems and measuring instruments.		
2. Unde	erstand the modern techniques in the field of medical science.		
3. Und	erstand PCB designing and working of consumer electronic devices.	(A leatures	
	THEORY	ov lectures	
Sub Unit	Unit – I: Transducers and Optoelectronics Devices	15 L	
1	Transducers: Definition, Classification, Selection of transducer		
2	Electrical transducers: Thermistor, Thermocouple, Resistance thermometer, Capacitive transducer, Pressure Transducer: Strain gauges (wire, foil, & semiconductor), Displacement transducer: LVDT, Peizo-electric Transducer, load cell		
3	Electronic Weighing Systems: Operating principle, Block diagram, features		
4	Optoelectronic Devices: LDR, liquid crystal display (DSM in detail) comparision between LED and LCD,Photodiode (construction, Characteristics & applications), Phototransistor.		
	Unit – II: Signal Generation , Conditioning And Measuring Instruments	15 L	
1	Half wave precision rectifier, Active Peak detector, Active Positive Clamper.		
2	Active Positive and Negative Clippers		
3	Wave form generation:		
	Triangular wave generator, sawtooth wave generator and square- triangular wave generator using op-amp.		
4	Instrumentation Amplifier & its applications: Basic instrumentation amplifier, applications of instrumentation amplifier: temperature indicator, light intensity meter, analog weight scale		
5	Cathode Ray Oscilloscope: Single trace CRO (Block diagram), Front Panel Controls (Intensity, Focus, Astigmatism, X & Y position, level knob, time base (Time/Division) and attenuation (Volts/Division) knobs, X-Y mode), Dual Trace CRO (Block diagram), Probes: 1:1&10:1. Digital Storage Oscilloscope		
6	DMM: 3 ¹ / ₂ Digit, resolution and sensitivity, general specification		

Semester V Course I

	Unit – III: Data Acquisition and Conversion	15 L
1	Data acquisition system: Objectives of DAS, Signal conditioning of inputs, Single channel Data Acquisition system, Multichannel Data Acquisition system. [Data Transmission systems].	
2	D to A Converters: Resistive divider network, Binary ladder network	
3	A to D Converters: Successive approximation type, Voltage to Time (Single slope, Dual slope).	
	Unit IV: Modern Techniques and Consumer Appliances &SMPS	15 L
1	Printed Circuit Board: Idea of PCB, advantages, copper clad, Etching processes, Principle of Photolithography (For PCB).	
2	Microwave Oven : Operating principle, block diagram, features.	
3	Medical instruments: Bio-Potential, Types of electrodes, ECG, EEG, EMG, CT Scan and MRI (principle, block diagram and features), Ultrasonography: working principle	
4	Switching Regulators: Basic and Monolithic Switching regulators (buck, boost and buck – boost) (Only basic Configurations)	
1.11	ICA(Internal Continuous Assessment)	
13	Class test, Seminars, Assignments and Class performance.	
References:	 R S Sedha, A Textbook of Applied Electronics: S Chand & Compan B. L. Thereja, (5th edition), Basic Electronics Solid state:, S Chan New Delhi. H S Kalsi, (4thedition), Electronic Instrumentation: Tata McGraw-J 	y, New Delhi. d & Company, Hill Publishing
	Company Limited, New Delhi. 4. Alan S. Morris., Butterworth-Heinemann, <i>Measurement and In</i> <i>Principles</i> :	nstrumentation
	 B. S. Sonde, (Istedition),<i>Transducers and display systems</i>: Tata Publishing Company Limited, New Delhi. 	McGraw-Hill
	6. A.P. Malvino and D. P. Leach,(7 th edition) <i>,Digital principles and</i> Tata McGraw-Hill.	l applications:,
	7. A. K. Sawhney, A course in electrical and electronic Meas Instrumentation: DhanpatRai and https://www.scribd.com/document/258017718/A-K-sawhney-ACou	surements and Sons. urse-in-
	Electrical-and-Electronic-Measurements-and-Instrumentation 8. S. M. Dhir, <i>Electronic components and materials: Principles, Manu</i> Maintenance: Tata McGray, Hill Publishing Company Limited, No	ufacture and
	 B. S. Sonde, <i>Data Converters:</i> Tata McGraw-Hill Publishing Comp New Delhi. 	banyLimited,
	10. Albert D. Helfrick, Willam D. Cooper, <i>Modern Electronic Instrum</i> <i>Measurement techniques</i> : Prentice Hall India Pvt. Ltd, New Delhi	nents and
	11. C.S.Rangan, G.R. Sarma, V.S. Mani, (2nd Edition), <i>Instrumentation Systems:</i> Tata McGrawHill	on Devices &

12. R. P. Bali, (2008), *Consumer Electronics*: Pearson Education.
13 S.P Bali, ., (2008 Edition)*Consumer Electronic*: Pearson Education Asia Pvt., Ltd.
14. Clyde F. Coombs. Jr., (6th edition)Printed *Circuits Handbook pdf*: McGraw HillHandbooks,
15. Mahmoud Wahby, (Nov 2013)*EDN Networks, PCB design basics*:
16. Joseph-Du-bary, *Introduction to Bio-medical Electronics*: McGraw Hill Co. Ltd.
17.- J. C. Wobster, *Medical instrumentation Application and design*:
18. L. Cromwell, F. J. Weibell, *Biomedical instruments and measurements*: Prentice hall of India of India Pvt. Ltd, New Delhi.

Course	Electronic Instrumentation Practical-I	2.5 Credits,
Code		Lectures/week
Learning	1. To correlate theory concepts.	04
Objectives:	2. Develop basic experimental skills through conduct of	
	experiments.	
	SEMESTER-V PRACTICALS	
1. The	rmistor Characteristics – Thermal and electrical.	
2. The	rmistor as sensor in temperature to voltage converter	224
using (OPAMP.	
3. OPA	AMP D/A Converter: Binary weighted resistors/Ladder network	rk
4.Squa	re and Triangular wave generator using OPAMPs	
5. Seco	ond Order active Low Pass filter (frequency response & phasere	lation).
6 Sec	ond Order active High Pass filter (frequency response phasere	elation).
7. Act	ive Notch Filter (frequency response & phase relation).	
8. Con	stant Current source using OPAMP and PNP transistor (o/p curr	rent less than 50
mA).	
9. LM	317 as constant current source.	
10. Sti	idy of variable dual power supply using LM 317& LM 337 (\pm 3	v to ± 15 v).
11.Bas	ic Instrumentation Amplifier using 3 Op-Amps coupled toresist	ance bridge.
1	ICA (Internal Continuous Assessment)	41
(Continous practical evaluation /seminar /Journal Report and Viv	va-voce.
		1
References:	1. Albert D. Helfrick& William D. Cooper, 1997, Modern E	lectronic
	Instrumentation & Measurement Techniques, Prentice Ha	all India
	Publications 2 Coughlin & F. F. Driscoll 6^{th} ed OPAMPs and linear in	ntegrated
	<i>circuits.</i> Prentice Hall of India Publications	uegruieu
	3. R.A. Gayakwad ,4 th edition, <i>OPAMPs and linear integral</i>	ted
	circuits, Prentice Hall of India Publications	
	4. A. P. Malvino, 6th edition, <i>Electronic Principles</i> , Tata N	IcGraw Hill
	Publications	
	5.H. S. Kalsi, 2 nd Edition, <i>Electronic Instrumentation</i> , 1 ata .	McGraw Hill
	6 Malvino and Leach 5 th edition <i>Digital Principle and App</i>	lications. Tata
	McGraw Hill Publications	<i>nomons</i> , 1 uu
	7. R.P. Jain, 3 rd edition. <i>Modern Digital Electronics</i> , Tata M	IcGraw Hill
	Publications	
	8. R. S. Khandpur, Handbook of medical instruments, 2 nd ec	lition, Tata
	McGraw Hill Publications	

[A] Students will come for one turn of 3 hours per week for the laboratory sessions(performing practical).

A minimum of 8 experiments from practical course are to be performed and reported in the journal.

The certified journal must contain a minimum of 8 experiments from the practical course.

Evaluation Scheme

[A] Evaluation scheme for Theory course SPHY5AC

- Continuous Assessment (C.A.) 40 Marks
 - i. C.A.-I : Test 20 Marks of 40 mins. Duration

6.7 10

- ii. C.A. –II: Assignment of problems/seminars/class performance
- Semester End Examination (SEE)- 60 Marks

[B] Evaluation scheme for Practical course

1.1.1.1

Total marks : 100				
Continuous Internal Assessment (CIA) 40% (40 marks)		essment	Semester End Examination (SEE) 60% (60 marks)	Total
Rough journal	Journal	Viva-Voce	Experiment	Total
20	10	10	60	100

Practical examination will be of two and half hours. Students will perform 1 experiment of two and half hours duration.

Note: Certified journal is a must for the student to appear for practical examination.