

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: B.Sc.

Proposed Course: Life Sciences

Semester-V

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2020-21

T.Y.B.Sc. Life SciencesSyllabus

Academic year 2020-21

Semester – V			
Course Code	Course Title	Credits	Lectures /Week
SLSC501	Genetics & Immunology I	04	04
SLSC502	Developmental Biology &	04	04
	Neurobiology I		
SLSC503	Fermentation technology & Genetic	04	04
	engineering: A Biotechnological		
	Approach I		
SLSC504	Environmental Biotechnology I	04	04
SLSC5PR1	Life Sciences Paper 1 & 2 Practical	04	08
SLSC5PR2	Life Sciences Paper 3 & 2 Practical	04	08
6	1 Lind	12	1

Semester	V –	Theory
----------	------------	--------

	Semester V – Theory	
Course Code: SLSC501	Course Title: Genetics and Immunology – I	04 Credits
Learning Objectives	 Upon completion of the course, the student would be able to: Understand the concepts of linkage, recombination and gene mapping in phage and bacteria. Understand organization of genomes Understand denaturation kinetics DNA Differentiate between innate and adaptive immunity, illustrate the cell types and organs involved in the process of the immune response The mechanism of antigen and antibody interactions and diagnostic immunology Understand the Role of Complement pathways Differentiate between humoral and cell mediated immunity describe lymphocyte development and the expression of their receptors 	
	mapping in bacteriophages. It also involves study of the immune system, its response and involvement in health and disease. While immunology as a <i>SCIENCE</i> has been defined as the "science of self / nonself discrimination", it also includes our innate ability to defend against microorganisms (Innate Immunity); and its ability to recognize and respond to fight the infections through Acquired Immunity. Specific topics being covered include antigens and antibodies, antigen-antibody interactions, antibody structure and formation, Effector responses etc.	
	THEORY	60 lectures
Sub-Unit	Unit – I: The Genetic material	15 lectures
1.	Discovery of genetic Material: Griffith's experiment of 1928; Avery, McLeod and McCarty's experiment of 1944; Hershey-Chase's experiment of 1952; and Fraenkel-Conrat and B. Singer's experiment of 1956	02
2.	 Molecular aspects: a) Sequence complexity of DNA - Unique and repetitive sequences of DNA b) Denaturation kinetics and 'CoT' curves c) Satellite DNA 	04
3.	 Genomes Organization: a) Organization of Prokaryotic genome b) Organization of Eukaryotic genome (Nucleosome structure and Higher orders of chromosome packing) 	04

	c) C value paradox	
4.	 Gene regulation in eukaryotes: a) Chromatic Condensation, modification and remodelling by acetylation and methylation (Heterochromatinization) b) Transcriptional regulation (promoters and enhancers and Transcription initiation complex c) GAL4-UAS system 	05
Sub-Unit	Unit – II: Mechanisms of Inheritance and variation in Prokaryotes and Bacteriophages	15 lectures
1.	 Genetic recombination in Bacteriophages: (Theory and numerical problems) a) Life Cycle of lytic and lysogenic phages b) Complementation in phages (Intra- and Inter-genic) c) Recombination mapping – Two- and three- factor crosses d) Deletion mapping e) Concept of "genes within genes", "alternate splicing" and "terminal redundancy" in phage genomes 	07
2.	Genetic recombination in Bacteria: (Theory and numerical problems) a) Transformation b) Conjugation a) c) Transduction	08
Sub-Unit	Unit – III: Overview and cells and organs of immune system	15 lectures
1.	a) Overview of the Immune system - Innate Vs Adaptive Immunity	01
1	 b) Innate immunity i. Anatomical, Physiological, Phagocytic, Inflammatory barriers ii. Concept of Apoptosis vs Necrosis iii. Concept of PAMP, PRR and TLR 	03
	 c) Cells and organs of the immune system Primary and secondary lymphoid organs Cells - structure and functions Myeloid cells Lymphoid cells NK cells 	04
2.	 Recognition of antigens (Antigen-antibody interactions) a) Antigen-Specificity, avidity, affinity, immunogenicity b) Antibody-Structure, Functions and variations c) Monoclonal and polyclonal antibodies (Hybridoma Technique) d) Organization and expression of Immunoglobulin genes e) Antigen-antibody interactions –Cross reactivity, Precipitation, Immuno- electrophoresis, Agglutination, 	07

	Radioimmunoassay	
Sub-Unit	Unit – IV: Antigen recognition and Effector Mechanisms	15 lectures
1.	 Recognition of antigens(Major Histocompatibility Complex): a) MHC-I and MHC-II molecules b) MHC allelic polymorphism c) MHC restriction d) Antigen processing and presentation-endogenous and exogenous pathways 	05
2.	 Maturation and activation of Lymphocytes: a) B- cell maturation, Activation and Differentiation b) T- cell maturation, Activation and Differentiation and T-cell receptor 	04
3.	 Immune Effector Mechanisms: a) Cytokines- IL-1, IL-2, IL-4, IFNs and TNFs b) Complement: i) Classical, alternate and lectin pathways and comparison ii) Biological consequences of complement activation iii) Complement fixation tests c) Cell-mediated effector responses: i) Cell-mediated effector responses: i) Cell-mediated cytotoxicity of T cells ii) Role of TH1, TH2, TH17 and Tc cells 	06
References	 Snustad and Simmons. (2006). Principles of Genetics, 4thedm and sons. Peter Russel (2006). I-Genetics; A Molecular approach, 2ndedn Griffiths et al. (2005). Introduction to Genetic Analysis, 8thd and co. Benjamin Lewin. (2008). Genes IX. Jones and Bartlett publishe S. B. Primrose and R. M. Twyman. (2007). Principles of Gene and Genomics, 7thedn. Blackwell publication. W. S. Klug and M. R. Cummings. (2003). Concepts of Ger Pearson. W. S. Klug, M. R. Cummings, C. A. Spencer. (2006). Concept 8thedn. Pearson. Tom Strachan and Andrew Read. (2004). Human Molecu 3rdedn. Garland Science pub. R.A.Goldsky, T. J. Kindt, B. A. Osborne, J. Kuby. (2003) 5thedn. W.H. Freeman. C. A. Janeway, P. Travers, M. Walport, M. Shlomo Immunology: The immune system in health and disease, 6th Science Pub. 	Pearson. edn. Freeman ers. Manipulation netics, 7 th edn. s of Genetics, lar Genetics, Immunology chik. (2005).

- A. K. Abbas, A. H. Litchman. (2000). Cellular and Molecular Immunology, 5thedn. Elsevier publication.
- 12. Roitt. (2006). Essential Immunology, 11thedn. Blackwell publication.
- 13. D. Mole, J. Bronstoff, D. Roth, I. Roitt, Mosbey. (2006) Immunology, 7th International edn. Elsevier publication.
- 14. C. V. Rao. (2002). An Introduction to Immunology. Narossa Publishers.

Course Code: SLSC502	Course Title: Developmental Biology and Neurobiology – I	04 Credits
Learning Objectives	 Upon completion of the course, the student would be able to: Describe model organisms and landmark discoveries in research related to developmental biology Plant developmental biology with Arabidopsis as the model System Events that orchestrate the development from a single cell to a multicellular organism in chick and human Neurological aspects of animal behaviour and imprinting in birds Parts of the nervous system and their functions Types of cells involved in the nervous system, resting membrane potential, graded potential, action potential – neuronal communication 	
Course description	This course is based on Developmental Biology and Neurobiology; both these topics form fundamental aspects of Life Sciences. Development is a process by which a single cell (the zygote) gives rise to an entire multicellular organism. It involves cell division, cell signalling, pattern formation, and organogenesis. Developmental details of chick and humans and Arabdopsis (plants) are the most well studied and researched worldwide and thus form the basis for providing a clear understanding of developmental biology. Neurobiology, on the other hand, is the means by which we communicate with the world. The course starts with the role in neurobiology in animal behaviour, followed by a thorough understanding of the parts of the brain, spinal cord and peripheral nervous system. Going into the cellular and molecular level, the types of cells and their functions and biophysics of electrical communicate with muscles, types of synapses and types of neurotransmitters is also covered.	
	THEORY	60 lectures
Sub-Unit	Unit – I: Developmental biology – Model organisms	15 lectures
1.	 Basic concepts in development a) Positional value of cells b) Inductive signals c) Asymmetry in cell division d) Lateral inhibition 	03
2.	 Model organisms in developmental biology a) Significance of model organisms b) Dictyostelium: acquisition of multicellularity 	03

	c) Zebra fish: in situ hybridizationd) Chick and amphibians: fate maps and chimeras	
3.	 Plant development: DicotyledonsArabidopsis as the model System a) Life cycle of Arabidopsis – sporophytic and gametophytic generation b) Fertilization and embryo development, Formation of meristems (root and shoot), c) Formation of different organs – leaf, flower, androecium [including development of anthers, pollen grain, pollen tube etc.] and gynoecium [development of pistil - up to formation of embryo sac] d) Double fertilization, seed formation. [Eventual formation of fruit], e) Role of Homeotic genes specifying parts of a flower f) Plant genome project (Arabidopsis and rice) 	09
Sub-Unit	Unit – II: Animal Development	15 lectures
1.	 Sexual Reproduction a) Sex determination, dosage compensation b) Fertilization, acrosome reaction, prevention of polyspermy, cortical reaction 	03
1.	Chick development - Introduction, cleavage, morula and blastula, gastrulation, neurulation, organogenesis, axis specification and avian organizer.	06
2.	Human development – Introduction, cleavage, morula and blastula, gastrulation, neurulation, organogenesis	06
Sub-Unit	Unit – III: Introduction to behaviour and the nervous system:	15 lectures
1.	Overview of animal behaviour a) Innate behaviour and Learned behaviour (example: Aplysia) b) Imprinting in birds, Behavioural defects – e.g. Bird songs of isolated, caged birds.)	03
2.	 General organization of the nervous system Vertebrate nervous system: a) Central Nervous System - cerebral hemispheres, cerebellum, diencephalon, medulla, pons, midbrain and spinal cord b) Peripheral Nervous system - (autonomous, somatic, cranial, spinal, plexii) c) Meninges and CSF, blood brain barrier d) Limbic System (emotions and memory) e) Hypothalamo – Hypophysial Axis 	12

Subunit	Unit IV: Cellular organization of the nervous system	15 lectures
1.	 a) Types of cells: Neuronal, Glial cells, Ependymal cells b) Chemical Basis of Neural transmission- Introduction Ionic basis of resting membrane potential: Donann's equilibrium experiments, Nernst's potential, Goldman's equation, Sodium –Potassium pump. c) Action Potential & propagation- Hodgkin and Huxley's model, voltage clamp experiment and the derivation and propagation of Action Potential, Graded potential d) Synaptic potential and synaptic integration [Electrical and Chemical Synaptic Potential] Excitatory Post Synaptic Potential (IPSP) e) Neuro – muscular junctions f) Synapse: Structure, Types – chemical and electrical 	09
2.	Neurotransmitters i. Introduction, Biosynthesis, physiological role, pharmacological ii. significance, (examples of one agonist and one antagonist for each iii. neurotransmitter mentioned below. iv. Acetylcholine (Nicotinic and muscarinic receptors). v. Dopamine (D1 and D2 receptors). vi. GABA and Glutamate vii. Neuropeptide (Endorphin and Enkephalin).	06
References	 Wolpert L., Tickle C., and Arias AA. (2015) Principles o Oxford University Press. Gilbert SF., Barresi M.J.F. (2016) Developmental Bio Associates, Oxford University Press. R.M.Twyman. (2000) BIOS Instant Notes in Developm Taylor & Francis. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore Molecular Cell Biology. (2000) Molecular Cell Biology, W.F Purves P., Augustine G., Fitzpatrick D., Hall WC., LaMantia (2011) Neuroscience, Sinauer Associates, Inc. Tortora GJ., Derrickson B. (2013) Principles of Anatomy a John Wiley & Sons Inc Longstaff A. (2011) BIOS Instant Notes in Neuroscience, Ta 8. Smith C.U.M. (2002) Elements Of Molecular Neurobiology, 	ology, Sinauer nental Biology, e D, Darnell J. H. Freeman. AS., White LE. and Physiology, ylor & Francis

Course Code: SLSC503	Course Title:Fermentation technology & Genetic engineering: A Biotechnological approach I	04 Credits
Learning Objectives	 Upon successful completion of this course, the student will be able to: Understand the various concepts of fermentation (aerobic, anaerobic, batch vs continuous); Design a simple containment system (Bioreactor / fermentor). Isolate and screen microorganism with potential to produce particular metabolite. Enhance the efficiency of microorganisms to produce particular metabolite and produce the same at large scale. Produce beer, wine, vinegar, cheese, yoghurt etc resulting from alcoholic and acidic fermentation. Understand the Principles of instrumentation Describe the use of restriction endonucleases in gene cloning. Describe the different vectors (prokaryotic) that can be used in gene cloning experiments. Describe the various strategies of cloning, screening and selection methods. This course is aimed at introducing the students to the basic concepts of Fermentation technology and Genetic Engineering. Fermentation technology includes isolation techniques used in biotechnological processes, bioreactors, and other membrane separation techniques, finalization (strain improvement) and stabilization, purification techniques for the isolation of metabolites and cellular components. Production of beer, wine, vinegar etc through fermentation processes.	
	THEORY	60 lectures
Sub-Unit	Unit – I: Fermentation technology – Principles	15 lectures
1.	History and development of Food & Fermentation Technology	01
2.	Fermentation technology & Instrumentation	01
3.	 a) Principles of microbial growth, b) Screening (primary & secondary) c) Strain improvement (mutation & selection using auxotrophy& analogue resistance 	04

4.	The Bioreactor / Fermenter & accessories (Stirred tank & Airlift)	02
5.	Media design for fermentation (include molasses, corn steep liquor)	02
6.	Downstream processing (use ex of Penicillin and an enzyme for cell disruption)	01
7.	Instrumentation: Principles and technique of Centrifugation, Spectrophotometry & Chromatography	04
Sub-Unit	Unit – II: Fermentation technology - Food and Beverage Production	15 lectures
1.	Batch v/s Continuous fermentation	02
2.	Technological aspects of industrial production of: a) Cheese b) Beer c) Vinegar d) Single Cell Protein e) Mushroom f) Yoghurt g) Wine	11
3.	Food quality assurance: Regulatory & social aspects of food biotechnology	02
Sub-Unit	Unit – III: Principles of Gene Cloning	15 lectures
1.	Introduction to the history of Gene cloning	01
2.	Molecular cloning methods: a) Cutting DNA molecules:	07
	 a) Restriction enzymes (Discovery, Nomenclature, Type I, II ,III, patterns of DNA cutting), Restriction Mapping, b) Use of Alkaline Phosphatase c) Joining DNA molecules: d) DNA ligases, Homopolymer tailing, Linker and Adaptors 	

Sub-Unit	Unit – IV: Cloning and Screening Techniques	15 lectures
1.	Cloning of genes: a. Genomic Libraries b. cDNA Libraries c. PCR cloning d. Positioning cloning	05
2.	 a) PCR: Polymerase chain reaction Method Limitations and applications Types of Primers – Universal, Nested, Poison primers Types – Q-PCR, RT-PCR b) Chromosome walking and Chromosome jumping 	05
3.	 Screening and selection of the desired clone: a) a)Immunological method b) Nucleic acid hybridization method c) Transformant Screening by Gene Inactivation method d) HRT and HART 	05
References	 Michael L Shuler and FikretKargi. (2008). Bioprocess Engin Concepts., Prentice-Hall of India Pvt Ltd. Stanbury P.F., Whitaker A. and Hall S.J. (2007). F Fermentation Technology. Elsevier India Pvt Ltd. Prescott And Dunn. (2004). Industrial Microbiology. Chapma Casida, L.E. (2003) Industrial Microbiology. New Age Inte Ltd. S.B. Primrose and Twyman. (2006). Principles of gene man Ed. Blackwell. R.W. Old and S.B. Primrose. (2004). Principles of gene man edition, Blackwell. Watson. (20010), Recombinant DNA, 3rd ed. ASM Press. T.A. Brown. (2009). Gene cloning and DNA analysis, 2n Blackwell. B. Glick et al. (2010). Molecular Biotechnology- Pr application of recombinant DNA, 4th ed. ASM Press. IO. D. Clark, N. Pazdernik. (2009) Biotechnology- Applying to revolution. Academic Press. 	Principles of an & Hall. ernational (P) ipulation, 7th ipulation, 6th d ed. Wiley- inciples and

Course Code: SLSC504	Course Title: Environmental Biotechnology I	04 Credits
Learning Objectives	 Upon completion of the course, the student would be able to: Articulate the interdisciplinary context of environmental issues. Prepare for career success in natural resources and its conservation, public health, environmental management Develop a sense of community responsibility by becoming aware of scientific issues in the larger social context. Well-grounded in laws and regulations of Indian constitution for the safeguard of Environment Develop standards of professional behaviour that include rules of ethics and etiquette. Articulate a comprehensive world view that integrates diverse approaches to sustainability. Understand the basic theoretical concepts and methodologies of both the physical and social sciences. Learn how to solve large-scale problems using a multitude of tools and approaches. Understand the basic sustainability concepts of homeostasis, carrying-capacity, recycling Formulate an action plan for sustainable alternatives that integrate science, humanist, and social perspectives. Environmental biotechnology is the scientific study of the environmental system and the status of its inherent or induced changes on organisms. It includes not only the study of physical and biological characters of the environment also the social and cultural factors and the impact of man on environment science, Sustainable development of the Biosphere and use of Natural resources, Biodiversity and wildlife management suit science, Sustainable development of the Biosphere and use of Natural resources, Biodiversity and wildlife management and et aware on environmental legal provisions.	

	THEORY	60 lectures
Sub-Unit	Unit – I: Introduction to Fundamentals of environmental science	15 lectures
1	 Environmental Science: a) Humans and Sustainability: i) Principles of Sustainability, Key Components ii) How humans affect their environment: Cultural Revolution; Hunter gatherer population, Agricultural revolution, Industrial–Medical Revolution, Information and Globalization Revolution. b) Ecosystem and Human needs: i) Resource depletion and pollution ii) Dwindling Biodiversity iii) Environmental problems and their solutions iv) Ecological footprints v) Environmental worldviews 	07
2	 Population and consumption Dynamics: a) Energy and food production Green revolution Blue revolution Blue revolution b) Ecological costs of food production. i) Industrialized Food Production and Environmental problems, Politics and economics of Hunger. ii) GM foods and their environmental concerns e.g. <i>Bt</i>Brinjal International Treaty on Plant Genetic Resources for food and Agriculture (ITGR) iv) Intellectual Property Rights (IPR) v) Biopiracy (e.g., Neem/Basmati) vi) Seed Bank g) Human impact on climate: Ozone layer and depletion Greenhouse effect and global warming Carbon footprints 	08
Sub-Unit	Unit – II: Biodiversity and its Conservation:	15 lectures
1	 a) Biomes of the world: climate, vegetation and Geographical distribution pattern. b) Biological diversity of India: Indian Bio-geographic Zones, climate and its impact on biodiversity. 	04
2	 a) Indian flora and fauna: Indian forest and vegetation types: diversity of flora and fauna i) Endangered, Endemic and Extinct Species of India ii) Threatened species categories of IUCN 	08

	iii) Threatened species of plants and animals in India and	
	their reasons	
	iv) Red data books	
	b) Wildlife management and conservation:	
	i) Goals and Strategies	
	ii) Human land-use and wildlife management	
	iii) Impact of Ecotourism; role of local communities in	
	wildlife management initiatives	
	c) Environmental biotechnology:	
	Role of biotechnology in conservation of species, in-situ and	
	ex-situ conservation	
3	a)Maning life	03
3	a)Marine life:	05
	i) Open sea and coastal sea productivity and conservation	
	issue	
Provide State	ii) Biodiversity conservation: Global agreements and	1
	national concerns	
	iii) RAMSAR sites	
Sub-Unit	Unit – III: Pesticides and Toxicology Management:	15 lectures
-		00
1	Pest and pesticides:	08
	a) Basic introduction to Pests, Pesticides and Environment	
	i) Pesticide toxicity	
	ii) Bioaccumulation and Biomagnification	
	iii) Persistence, resistance and pollution	1
	b) New methods of pest control:	1
- N	i) Integrated pest management	
	ii) Biological pest control by predators, parasites, and	
1	pathogens	
	iii) Genetically Engineering and pest control	
	c) Bioremediation and Phytoremediation of Pesticide	
	d) Pesticide regulation and Endosulphan issue	
	a) i concide regulation and Endosulphin Issue	
2	Toxicology Management.	07
-	a) Basic concepts, toxicity and its impacts	01
	i) Industrial toxicants and hazardous materials	
	ii) Toxic and hazardous waste management	
	iii) Measurement of toxicity, TLM and lethality studies,	
	iv) Physiological and metabolic effects on flora and fauna.	
	b) Limitation of Toxicological studies:	
	Comparison of animal toxicological models and Toxicity in	
	Humans.	
	c) Human clinical trials:	
	Concept of Clinical trial phases - I, II, III and IV.	
	d) Ethical issues of clinical trials:	
	d) Ethical issues of clinical trials: e.g. Thalidomide, Human Papillomavirus vaccine trials.	

Sub-Unit	Unit – IV:	15 lectures
1	 a) Sustainable Development i) Sustainable Development: As defined by United Nations World Commission on Environment and Development. ii) Ecological and economic growth factor for sustainable development, integrating environmental concerns in economic decision iii) Costs benefit analysis iv) Role of International Environmental Organizations in sustainable economic development. 	06
2	 a) Awareness of citizen on environmental legal provisions: i) Constitutional Provisions for environment ii) Legislative power relating to environmental law iii) General laws relating to environment 	06
3	 a) Entrepreneurship Skill Development i) General concept and Key features of an entrepreneur ii) Factors affecting entrepreneurship development iii) Risks and benefits iv) Historic background 	03
References	 Living in the Environment (17th Edition) by G. Tyler Spoolman (2015) Entrepreneurial And Innovative Management by Buame, The Entrepreneur, Entrepreneurship and Developm Programmes and Policies VOLUME 1 by Vasant desai Misra and Pandey (2011), "Essential environmental studie Martens (1998), "Health and climate change ", Earth Scan Saxena (1998), "Environmental Analysis of soil and air", Chakraborti (2005), "Energy efficient and environment technologies for rural development ", Allied Publishers Dash M C (2004) "Ecology, chemistry and M environmental Pollution ",Mac Millan India Nayak ,Amar(2006) "Sustainable sewage water Managen India Dolder, Willi (2009), "Endangered animals, Parragon Gupta P K (2000)," Methods in environmental Analysis", Fumento, Michael (2003), "Bioevolution : How biote changing our world", California encounter Books Kapur (2010) "Vulnerable India ", SAGE Jacob, Miriam(2004)," Silent Invaders", Orient Longmar 15. Mc Cafferty (1998),"Aquatic Entomology ", Jones and Ba 16. Subramanyam (2006), "Ecology", 2nded.Narosa Dilip Kumar, Rajvaidya (2004)," Environmental Biotechn 18. Sharma and Khan (2004)," Ozone Depletion and Enviror ,Pointer publishers 	S, (2000) nent Principles, es", Ane Books Agrobotanica nt friendly Management of nent ",Mc Millan Agrobio (India) echnology is

Course Code SLSC5PR1	Course Title: Life Sciences Paper 1 & 2 Practical	04 Credits
PRACTICAL – I	Genetics	
1.	Extraction of chromosomal DNA from chicken liver	
2.	Streak plate isolation of saliva on two different media	
3.	Viable count for enumeration of bacteria by – Bulk seed method	
4.	Viable count for enumeration of bacteria by – Surface spread method	
5.	Study of wild-type and mutant <i>Drosophila</i> from slides / photographs	
6.	Study of UV-Visible Spectrophotometer	
7.	Polymerase Chain Reaction	
1.1	Immunology	
8.	Study of ABO and Rh Blood grouping systems	
9.	Isoamagglutination Titre	
10.	Coomb's Test	
11.	Quantitative Widal Test	
12.	Study of lymphoid organs of rat (photograph)	
13.	Study of Thymus, Spleen, and Lymph node (tissue sections)	
14.	Observation of Blast cells in bone marrow of any mammal (slides/photograph)	

Semester V – Practical

PRACTICAL – II	Developmental Biology
1.	Study of developmental stages of chick embryo
2.	Cytochrome C- oxidase activity in a developing chick embryo
3.	Programmed cell death in limb bud using Janus Green B stain (in chick embryo)
4.	Alizarin stain to study limb development in chick embryo/ Regeneration of cartilage / bone
5.	Acid and alkaline Phosphatase in Chick embryo
6.	Effect of temperature on cell viability in pollen grains/yeast using Trypan blue/ acetocarmine
7.	Root and shoot development in sections of a 2 day old plant embryo
	Neurobiology
8.	Dissection & display of Nervous system in invertebrates – earthworm
9.	Dissection & display of Nervous system in vertebrates – chick brain
10.	Study of Permanent slides/photographs - Medullary nerve fibre, TS of Spinal cord, Mammalian retina, Electron micrographs of neural tissue
11.	Study of the Nervous system of Sepia with special reference to Giant axon and stellate ganglia

Course Code SLSC5PR2	Course Title: Life Sciences Paper 3 & 4 Practical	04 Credits
PRACTICAL – III	FERMENTATION TECHNOLOGY & GENETIC ENGINEERING: A BIOTECHNOLOGICAL APPROACH	
1.	Extraction of enzyme: (Amylase from sweet-potato / salivary amylase / egg white lysozyme or any other convenient enzyme)	
2.	Purification of enzyme: Above enzyme extract used for purifying by salting-out method	
3.	Determination of - i) enzyme activity ii) specific activity.	
4.	Determination of the effect of pH and Temperature on Enzyme activity (Amylase / any other convenient enzyme).	
5.	Determination of the K _m of amylase/any other convenient enzyme.	
6.	Immobilization of Enzyme (Amylase/any other convenient enzyme) using hen egg-white / alginate method and assay its activity.	
7.	Polyacrylamide Gel Electrophoresis of <i>E. coli</i> extract / Serum proteins / Saliva / Egg white any other suitable sample.	
PRACTICAL – IV	Environmental Sciences	
T A	A visit to aquatic ecosystem and methods for water and plankton collection/ Plankton identification and quantification from river / lake water samples	
2.	Vegetation studies by line, quadrates and belt transect methods and their analysis.	
3.	Preparation of media for microbial culture, Isolation and culturing of microbes from Soil / water samples (Fungal /Bacterial organism).	
4.	Study of fecundity from the given sample of freshwater/marine fish	
5.	Isolation and culturing of Rhizobium from the given sample.	
6.	Analysis of soils for pH, moisture, soil types.	
7.	Water analysis for physicochemical characteristics: (any three) Salinity/Acidity/Alkalinity/BOD/DO/COD/Copper	
8.	Calculating carbon foot print	

Evaluation Scheme

[A] Evaluation scheme for Theory courses

- I. Continuous Assessment (C.A.) 40 Marks
 - (i) C.A.-I : Test -20 Marks of 40 min. duration
 - (ii) C.A.-II : Precis writing, Documentary making, Presentations, Quizzes based on videos, Surveys etc.
- II. Semester End Examination (SEE)- 60 Marks

[B] Evaluation scheme for Practical courses

I. Continuous Assessment (C.A.) For each Practical – 20 Marks

II. Semester End Examination (SEE) For each Practical – 30 Marks

Grand total of Practical = 100+100=200

Note: The Department of Life Sciences offers "Food Nutrition, Preservation and Dietetics" as the applied component. The Syllabus of the same is available separately.