

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE & LT LALVANI COLLECE OF COMMERCI

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: B.Sc

Proposed Course: Microbiology

Semester I

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2020-21

F.Y.B.Sc. Microbiology Syllabus

Academic year 2020-2021

Semester 1			
Course Code	Course Title	Credits	Lectures /Week
SMIC101	Fundamentals of Microbiology	2	3
Unit 1	Introduction To Microbiology and Prokaryotic cell structure	-	
Unit 2	Biosafety and Biomolecules		
Unit 3	Nucleic acid Structure and Chemistry		1
SMIC 102	Basic Techniques in Microbiology	2	3
Unit 1	Microscopy & Staining	and the second	
Unit 2	Controlling Microbial Growth in the environment	4.14	
Unit 3	Microbial Nutrition, Cultivation, Isolation and Preservation		
SMIC1PR	1.	2	6

SEMESTER I – THEORY

Course		
Code:	FUNDAMENTALS OF MICROBIOLOGY	
SMIC 101	(Credits: 2 ; Lectures /week:3)	
Learning	To study the historical developments in the Fields of Microbiolo	gy
Objectives:	Be aware of the scope and relevance of Microbiology	
	Learn the structure and function of Prokaryotic cells and to	
	differentiate them from eukaryotic cells	
	To study the significant role micro-organisms play in the living	vorld
	To understand the basic safety measures to be adopted in a	
	microbiology laboratory	
	Understand the basic structure and function of Biomolecules	
Outcomes:	On completion of the course, students will be able to:	
	Get an idea about the historical events in Microbiology	
	Know the scope of Microbiology	
	Know the structural details of prokaryotic cell	
	Develop fundamental knowledge about various biomolecules	
Unit I	Introduction To Microbiology and Prokaryotic cell structure	15 L
1.1	History and scope of Microbiology :	
1	a. Microscopy and the discovery of micro-organisms	
	b. The conflict over spontaneous generation	05
	c. The golden age of Microbiology: Koch's Postulates, Medical	
	Microbiology, Immunology	
	d. The development of Industrial Microbiology and Microbial	
	Ecology	
	e. The Scope and Relevance of Microbiology	
1.2	The Place of Micro-organisms in the Living world:	01
	a. Haeckel's Kingdom Protista	
	b. Prokaryotic and Eukaryotic Protists	
	c. Whitaker's 5 Kingdom concept	
	d. Carl Woese's three kingdom Classification	
1.3	Prokaryotic Cell Structure and Function:	09
	a. Morphology of Bacteria	
	b. Prokaryotic Cell Membranes- Bacteria and Archaebacteria	
	c. The Cytoplasmic matrix: cytoskeleton, inclusion bodies,	
	ribosomes	
	d. The Nucleoid, Plasmids	
	e. The Bacterial and Archaebacterial Cell wall	
	I. Components external to the cell wall: Capsules, Slime layers,	
	S-layers, Pili and Fimbriae, Flagella	
	g. The Bacterial Endospore	
	n. Comparison of Bacterial, Archaebacterial and Eucaryotic cell	

Unit II	Biosafety and Biomolecules	15 L	
2.1	Biosafety in the Microbiology Laboratory:		
	a. Routes of infection in the laboratory		
	b. Hazardous procedures		
	c. Exposure control plan		
	i. Employee education and orientation		
	ii. Disposal of hazardous waste		
	iii. Universal/ Standard Precautions		
	iv. Engineering controls(Laboratory environment, Biological		
	safety cabinet)		
	d. Personal Protective equipment		
	e. Post exposure control		
	f. Biosafety levels		
	g. Mishaps with infective material		
2.2	Biomolecules	12	
2.2	The Hierarchy of Molecular organization of cells	01	
2.2.1	Types of bonds and their importance	U1	
2.2.2	a Covalent (ester phosphate ester thioester pentide glycosidic)		
	b Non Covalent interactions (Hydrogen bonds, Vander Waals		
	interaction interactions hydrophobic interactions)		
	interaction, tome interactions, hydrophoble interactions)		
2.2.3	Water : Structure and properties		
224	Carbohydrates	04	
2.2.7	Definition Classification Biological importance and structures	04	
	a Monosageharidos		
1.1	i Aldoses and ketoses		
	ii Occurrence, structure and significance of Glucose		
	Fructose. Galactose and Mannose		
	iii. Fischer and Haworth Projection		
	iv. Stereoisomers (D and L isomers, Epimers, Anomers)		
	b. Oligosaccharides		
	i. Formation of glycosidic bonds (α , β)		
	ii. Occurrence, structure and significance of Maltose,		
	Lactose and Sucrose. (disaccharides)		
	c. Polysaccharides		
	i. Classification based on composition:		
	Homopolysaccharides and Heteropolysaccharides		
	ii. Occurrence, structure and significance of storage		
	(Starch, Glycogen) and structural Polysaccharides(
	Cellulose, Chitin)		
2.2.5	Lipids:	0.2	
	a. Definition and Bloor's classification :(Simple, Complex,	02	
	Derived and Miscellaneous)		
	D. Fally Acids		
	I. Classification (saturated, unsaturated) ii Structure and Nomencleture of Delmitic acid. Steeric		
	acid. MUFA – Oleic acid. PUFA – Linoleic and		

	Linolenic acid	
	c. Triacylglycerol	
	i. General structure	
	ii. Properties (hydrolysis, saponification and rancidity)	
	d. Functions of compound lipids	
	i. Phospholipids (glycerophospholipids and	
	spingophospholipids)	
	ii. Glycolipids	
	e. Steroids: (Structure and significance)	
2.2.6	Amino Acids and Proteins:	
	a. Amino Acids	04
	i. General structure: D and L forms of amino acids	
	ii. Classification based on (Structure, nutritional	
The second second	classification, metabolic fate)	
100	iii. Properties : Physical and chemical	
	b. Peptides and Proteins	
	i. Classification and Properties	
	ii. 3-D Structure of Proteins : primary, secondary, tertiary	
	and quaternary	
Unit III	Nucleic acid structure and chemistry	15 L
3.1	Nucleic acid structure:	10
	a. Definition and functions of Nucleotides and Nucleic acids	
	b. Structure and nomenclature : Purines, Pyrimidines, Ribose,	
- L.	Deoxyribose, Nucleosides and Nucleotides	
	c. Formation of Polynucleotide strand	
	d. DNA and RNA	
	e. Watson and Crick model of DNA	
	f. A and Z forms of DNA	
	g. Unusual structures of certain DNA sequences	
	h. Types, structures and functions of RNA: mRNA, tRNA, rRNA,	
	snRNA, miRNA, hn RNA	
3.2	Nucleic acid chemistry:	04
	a. Denaturation of double helical DNA and RNA	
	b. Hybrid formation of nucleic acid from different species	
	c. Non enzymatic transformations of nucleotides and nucleic acids	
	d. Methylation of nucleotide bases in DNA	
3.3	Overview of Structure of Chromosomes	01
	Textbooks and Additional References:	
1. Pelczar M	A., Reid R. and Chan E., Microbiology, McGraw-Hill 5 th Ed., 1977.	
2. Black B.	, Jacquelyn G. & Laura J. O, Microbiology :principles and explorations,	
Hoboker	n, NJ : Wiley, 8 th Ed., 2013.	
3. Mackie	Г. J., Collee J. G & McCartney J. E., Mackie & McCartney practical media	cal
microbiology, New York : Churchill Livingstone, 14th Ed., 1996.		
4. Forbes B	A., Sahm D.F. & Weissfeld A.S., Bailey and Scott's Diagnostic Microbio	ology,
Mosby, I	nc, 11 th Ed., 2002.	

- 5. Mahon C.R., Lehman D.C. & Manuselis G, Textbook of Diagnostic Microbiology, Saunders, 3rd Ed., 2007.
- 6. Garrett R. H. & Grisham C. M. Biochemistry, Belmont, CA: Brooks/Cole, Cengage Learning, 2010.
- 7. Frobisher M., Fundamentals of microbiology, Philadelpia: Saunders, 9th Ed., 1974.
- 8. Lehninger A. L., Nelson D. L. & Cox M. M., Lehninger principles of biochemistry, New York: Worth Publishers, 5th Ed., 2008.
- 9. Conn E & Stumpf P.K., Outlines of Biochemistry, New York: Wiley, 2005.
- 10. Satyanarayana U. & Chakrapani U., Essentials of Biochemistry, Kolkatta:Books and allied, 2ndEd., 2008.
- 11. Pierce B.A, Genetics: A conceptual approach, New York:W.H, 3rd Ed., 2008.
- 12. Das D., Biochemistry, Academic Publishers, 14th Ed., 2012.

Course Code: SMIC102	Course Title: BASIC TECHNIQUES IN MICROBIOLOGY (Credits: 2; Lectures /week:3)	45L
Learning Objectives	 Learn the basic principles underlying the working of different Microscopes Understand the principles of staining and to use various types of staining techniques to differentiate between organisms and special staining techniques to demonstrate special structures of a cell To study the role of various physical and chemical agents in controlling the growth of micro-organisms Learn the methods used to cultivate micro-organisms and how to preserve them. 	
Outcomes	 On completion of the course, students will be able to: Know parts of microscope, type and its principle Understand different methods of staining techniques Use various methods to control microbes. Understand nutritional requirements of bacteria. Understand the need and the different ways of preservation of microbes 	
Unit I	Microscopy & Staining	15 L
1.	a. Lenses & bending of lightb. Resolution of the Microscope	02
2.	The Light Microscopea. Bright Field Microscopeb. The Dark Field Microscopec. The Phase Contrast Microscoped. Micrometry	07
3.	 Staining of specimens a. Dyes and stains: Types (natural, synthetic, acidic, basic, neutral) b. Fixation (heat and chemical) c. Simple staining (positive and negative staining) d. Differential staining (gram staining, acid fast staining) e. Staining of specific structures (Cell wall, Capsules, Spores, Metachromatic granules) 	06
Unit II	Controlling Microbial Growth in the environment	15L
1.	 a. General Considerations in Microbial Control b. Terminology and Methods of Microbial Control c. Microbial Death and factors affecting microbial death d. How Antimicrobial agents work : Mode of action 	02
2.	Physical methods of Microbial Control a. Heat : Moist & Dry	06

	b. Low temperaturec. Filtrationd. Radiations	
3.	Chemical methods of Microbial Control a. Choosing a Microbicidal Chemical b. Factors that affect the germicidal activity of chemicals c. Germicidal Categories i. Halogens ii. Phenols iii. Alcohols iv. Hydrogen Peroxide v. Detergents vi. Heavy Metals vii. Aldehydes viii. Gaseous Sterilants ix. Dyes	05
4.	Evaluation of effectiveness of Antimicrobial agenta. Agar diffusionb. Tube dilutionc. Phenol co-efficientd. Use dilution	02
Unit III	Microbial Nutrition, Cultivation, Isolation and Preservation	15L
1.	 a. Nutritional requirements:Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and growth factors. b. Nutritional types of microorganisms 	06
2.	a. Types of Culture media with examplesb. Isolation of microorganisms and pure culture techniques.	06
3.	a. Preservation of microorganismsb. Culture Collection Centres	03

Textbooks and Additional References:

- 1. Willey J. M., Sherwood L., Woolverton C. J., Prescott L. M., & Willey J. M., Prescott's microbiology, New York: McGraw-Hill, 8th Ed., 2011.
- 2. Pelczar M., Reid R. and Chan E., Microbiology, New York: McGraw-Hill, 5th Ed., 1977.
- Talaro K. P.& Talaro A., Foundations in microbiology: Basic principles, Boston: WCB/McGraw Hill, 7th Ed., 2009.
- 4. Patel A.H., Industrial Microbiology, New Delhi: MacMillan, 2005.

Course code: Practicals based on SMIC 101 and SMIC 102 (Credits: 2 Practicals /Week: Equivalent to 6 lectures/week) **SMICIPR** This course is designed to demonstrate practical skills in the use of tools and techniques Learning **Objectives:** common to microbiology. Students will be able to perform and explain the theoretical basis of the **Outcomes:** tools, techniques and methods common to Microbiology **PRACTICAL I:** 1. Assignment: Contribution of Scientists to the field of Microbiology since the last 20 years 2. Special Staining: Cell wall, Capsule, Endospores, Metachromatic granules 3 Handling corrosive chemicals using rubber teat method for pipetting and use of auto-pipettes 4. Safety inoculation hood and laminar air flow 5 Qualitative detection: a. Carbohydrates:, Molisch's, Benedicts tests b. Proteins and amino acids: Biuret ,Ninhydrin c. Nucleic acid detection: DPA and Orcinol 6. Isolation of DNA from onion **PRACTICAL II:** Microscopy: Parts of a microscope 1 2 Measurement of cell dimensions : Micrometry 3 Dark field and Phase Contrast Microscope : Demonstration 4 Monochrome and differential staining procedures :Gram Staining and negative staining Introduction to laboratory equipments, disinfection and discarding techniques in 5 the laboratory Methods of preparation of glassware for sterilization (pipettes, petri plates, 6 plastic wares, flasks, micropipettes, microtitre plates) and Control of microorganisms using moist heat and dry heat sterilization.(Sterilization of dry powders, rubber gloves, bandages, screw capped tubes, sterilizable plastic wares) 7 Determination of the performance efficiency of the Autoclave and Hot air oven 8 Effect of UV light on bacteria 9 Effect of heavy metals (Oligodynamic action) on bacteria 10 Effect of dyes and phenolic compounds on bacteria 11 Preparation of culture media: a. Liquid medium (Nutrient broth) b. Solid media (Nutrient agar, Sabouraud's agar) c. Aseptic transfer of liquid media and preparation of slants, Butts and plates. 12 Inoculation techniques and study of growth: a. Inoculation of liquid medium b. Inoculation of solid media (slants, butts and plates)

SEMESTER I- PRACTICAL

c. Study of colony characteristics of pigment and nonpigmented producing bacteria
d. Study of motility by stab inoculation and (hanging drop preparation – demonstration)
13. Use of Differential and Selective media (MacConkey's agar)
14. Methods of Preservation of cultures

a. Sub culturing
b. Mineral oil overlay
c. Soil stock method
d. Glycerol stock method

Examination		Time Duration	Marks	
A. EVALUATION SCHEME FOR THEORY COURSES (2 PAPERS)				
I. Continuous Assessment (C.A.)			40	
C.A.I Test	MCQ, 1M answers etc	40 mins	20	
C.A.II Test	Assignment/Project /Posters/ Presentations etc		20	
II. Semester End Examination (SEE)	1417	2 hours	60	
Each Theory Paper	1.	A.N.	40+60= 100	
B. EVALUATION SCHEM	E FOR PRACTICAL C	OURSES (2 COU	RSES)	
Semester End Practical Examination	1111	1	100	
For Each Practical course	1	11	50	
Practical Course (2 courses)	11111	2 days	100	

EVALUATION SCHEME: