

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: B.Sc Proposed Course: Biotechnology

Semester III

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2020-21

Academic year	2020-21
---------------	---------

Semester III			
Course Code	Course Title	Credits	Lectures /Week
SBT301	Cell Biology and Immunology	3	3
SBT302	Molecular Biology	3	3
SBT303	Food and Fermentation Technology	3	3
SBT304	Environmental Biotechnology	3	3
SBT305	Bio-organic Chemistry	3	3
SBT306	Methods in Analytical Chemistry	3	3
SBT307	Scientific Research Methodology	3	3
SBTP301	Practicals of SBT301, 302 and SBT303	2.5	9
SBTP302	Practicals of SBT304, 305 and SBT306	2.5	9

SBT301	Cell Biology and Immunology	3 Credits
Learning Objectives	 To provide an understanding of the structure, organization, role, a of the eukaryotic cell membrane. To acquaint students with effectors of immune system, cells and immune system To enable student understand newer avenues of diagnostics and t immunological techniques 	organs of
Course description	This course aims to equip the student with a thorough knowledge of membranes of eukaryotic cell (mainly with reference to mammalian would lay the foundation to understand the various complexities asso membrane role and its significance in Cell Biology. Students will fur understanding of various effectors of human immune system viz. cel immune system. They would gain an insight of various methods and immunology and their applications in modern diagnosis and theraped	cells). This ociated with cell ther develop an ls and organs of techniques of
	THEORY	(45 lectures)
Sub Unit	Unit 1: Cell Membrane	15 L
1.	Introduction: Overview of Membrane functions; Brief history on studies of plasma membrane structure.	
2.	Organisation of membrane structure: Chemical composition of membranes – Lipids, Carbohydrates and Proteins. Membrane proteins (integral, peripheral, lipid-anchored). Membrane lipids and membrane fluidity (importance of membrane fluidity, maintenance of membrane fluidity). Glycocalyx (structure and role).	
3.	Membrane transport: Passive, Facilitated diffusion and carrier proteins, Ion channels; Active transport.	
4.	Endocytosis: Phagocytosis, receptor-mediated endocytosis, protein trafficking in endocytosis.	

Semester I – Theory

5.	Cell Junctions, Cell Adhesion and the ECM: Tight junctions, Gap junctions, Desmosomes and ECM. Plasmodesmata.	
	Unit :2 Cells and organs Immune system	15 L
1.	 a) Haematopoiesis b) Cells of Immune system; i. Lymphoid cells B lymphocytes, T Lymphocytes, T_H, T_C, CTL, 	
	Common Cluster of Differentiation(CD) markers to distinguish functional lymphocyte population,	
	NK cells, ADCC, NKT cells, TCR, Mononuclear phagocytes, Phagocytosis, Granulocytic cells, Mast cells, Dendritic cells (DC), Follicular Dendritic cells	
	c) Mutations/diseases associated with immune cells	
2.	 d) Organs of Immune system; i. Primary Lymphoid organs- ii. Thymus, Bone marrow, Lymphatic system ii. Secondary Lymphoid organs- Lymph nodes, Spleen e) Lymphoid tissue- MALT, BALT, GALT, CALT 	
3.	 f) Antigens, Haptens, Superantigens, Aduvants, Epitopes g) Monoclonal antibodies, Herceptin h) Antibodies, antigenic determinants on immunoglobulins 	
	Unit : 3 Techniques in Immunology	15 L
	 a) Antibody avidity b) Ag- Ab cross reactivity c) Precipitation reactions Immunodiffusion 	
	Radial Immunodiffusion Rocket Immunoelectrophoresis Two dimentional electrophoresis	
	Counter-current Immunoelectrophoresis d) Agglutination reactions Hemeagglutination Agglutination inhibition reaction	
	Coomb's Test CFT e) RIA f) ELISA	
	g) Western blotting	

	 h) Immunoprecipitation i) Immunofluorescence Direct staining j) CLIA k) Flow cytometry and fluorescence l) Alternatives to Ag- Ab reactions
-	m) Immunoelectron microscopyn) Hybridoma Technology
CA (Continuous Assessment)	 CA1- Written test CA 2- Bioexpressions/ Animations/ Nobel Laureates
References:	1. Karp G. (2010). Cell Biology. International Student Version. 6 th Edition.
	John Wiley and Sons, Inc. 2. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., and Walter P.
	(2008). Molecular Biology of the Cell. 5 th Edition. Garland Science.
1.	3. Cooper G. M., and Hausman R. E. (2009). The Cell – A Molecular
11	 Approach. 5th Edition. ASM Press. 4. De Robertis E. D. P. (2001). Cell and Molecular Biology. 8th Edition.
	 Lippincott Williams and Wilkins. 5. Kindt T. J., Goldsby R. A., and Osborne B. A. (2007). Kuby Immunology. 6th Edition. W.H. Freeman And Company.
	 Rao C. V. (2007). Immunology. 2nd Edition. Narosa Publishing House Pvt. Ltd.
	 Abbas A. and Lichtman A. (2014).Cellular and Molecular Immunology. 8th Edition. Elsevier Saunders.
	 Ananthanarayan R. and Panikar C. K. J. (2009). Textbook of Microbiology. 8Th Edition. Universities Press.
	9. Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3 rd Edition.
	Books and Allied (P) Ltd.
	10. Nelson D. L., and Cox M. M. (2008). Lehninger Principles of Biochemistry. 5 th Edition. W H Freeman and Company
	11. Pathak S. and Palan U.(2005) Immunology: Essential and Fundamental.
	Science Publishers, U.S.; 2nd Revised edition edition (1 February 2005) ISBN-10:1578083796; ISBN-13:97857883794

SBT302	Molecular Biology	3 Credits
Learning Objectives	 To provide an understanding of the process of gene expression, a the genetic code in both prokaryotes and eukaryotes. To acquaint the student with the concept of mutation in DNA and processes involved. 	
Course description	At the end of this course, the student would be able to fully understate comprehend the processes involved in both gene expression and prote from mRNA. The student would also be familiar with the events of p mutations in the DNA molecule with specific ways that a cell resorts damaged DNA.	ein formation ossible
	THEORY	(45 lectures)
Sub Unit	Unit 1: Transcription	15 L
1.	Gene Expression- an Overview: The Central Dogma, Overview of transcription process – RNA synthesis. Classes of RNA.	
2.	Transcription Process in Prokaryotes : RNA polymerases; Promoters and Enhancers; Initiation of Transcription at Promoters; Elongation and Termination of an RNA Chain. Coupled transcription-translation. Crispr.	
3.	Transcription in Eukaryotes : Eukaryotic RNA Polymerases; Eukaryotic Promoters; Superenhancers; Transcription of Protein Coding Genes by RNA Polymerase; Eukaryotic mRNAs; miRNAs, siRNAs, Transcription of other genes; Introns and Exons; Spliceosomes; RNA editing.	
Sub Unit	Unit 2: Translation	15 L
1.	Introduction: Chemical and molecular structure of proteins. Nature of the genetic code – properties of the genetic code; deciphering the code.	15 L
2.	Translation of the genetic message: Aminoacyl-tRNA molecules; Initiation of translation; Elongation of the polypeptide chain; Termination of translation.	

3.	Protein sorting in the cell:
	Transport of proteins – general; to the endoplasmic reticulum; chloroplasts and nucleus.
Sub Unit	Unit 3: Mutation and DNA repair 15 L
1.	Definition and Types of Mutations:
-	Mutagenesis and Mutagens. (Examples of Physical, Chemical and Biological Mutagens) Types of mutations. Causes (spontaneous, induced)
2.	Mutagens: Mode of Action. Screening for potential mutagens.
3.	DNA repair mechanisms: Direct correction of mutational lesions. Repair involving excision of base pairs. Human genetic diseases resulting from DNA replication and repair errors.
4.	Screening procedures for isolation of mutants:
	Visible mutations; Nutritional mutations; Conditional mutations; Modern molecular screens. Ame's test, Herd's test.
CA	1. CA1 – Written test
(Continuous Assessment)	 CA 2 – Study and present report (using examples from products used which could be potential mutagens)
References:	 Russell P. J. (1998). Genetics. 5th Edition. Benjamin/Cummings Publishing Company Inc.
	 Russell P. J. (2016). Essential iGenetics. 3rd Edition. Pearson Education.
	3. Snustad P. D., and Simmons M. J. (2010). Principles of Genetics. 5 th
	Edition. John Wiley and Sons, Inc.
	 Maloy S. R., Cronan J. E., and Freifelder D. (2006). Microbial Genetics. 2nd Edition. Narosa Publishing House.

SBT303	Food and Fermentation Technology	3 Credits
Learning Objectives	 To acquaint students with the basic concepts and techniques in for fermentation technology. To understand the usefulness of various applications in the food a industry. 	
Course description	The aim of this course is to provide an exhaustive understanding of t in which Biotechnology is involved in the food and fermentation indi- enable the student to appreciate the usefulness of microbes, plants and the food and fermentation industry and thus have a mindset equipped discoveries/inventions.	ustry. This will d animal cells in
	THEORY	(45 lectures)
Sub Unit	Unit 1: Food Technology I	15 L
1.	Food Biotechnology: Traditional and modern; Food security; Genetic modification of food – concerns and measures undertaken.	
2.	Foods: Classes of foods. Genetically engineered plants and foods (GMO derived foods, foods containing genetically modified materials, developments in the seed industry, and improvements of plants. Bioethics in plant genetic engineering. Genetically modified crops).	
3.	Microorganisms and food: Fermentation. Spoilage. Food hazards. Factors affecting the growth and survival of microorganisms in food (microbial growth, intrinsic factors, extrinsic factors, implicit factors). Predictive food microbiology.	
4.	 Food preservation, processing and packaging: Heat, Irradiation, High-pressure, Low-temperature, Chemical preservatives, Modification of atmosphere, Control of water activity, Compartmentalization. HACCP and QACCP, reduced oxygen packaging, modified atmosphere packaging, films, pickling, vacuum and drying. 	

Sub Unit	Unit 2: Food Technology II	15 L
1.	Fermented and microbial foods:	
	Yeasts, lactic acid bacteria. Fermented milks, cheese, fermented plant products, fermented meats, fermented fish, beer, vinegar, mould fermentations.	
2.	Microbiological examination of foods:	
_	Direct, Cultural, Enumeration, Alternative methods, Rapid methods.	
3.	Dairy Microbiology: Microflora of raw milk, Starter cultures and their use, fermented milks and cream (types of fermented milks; examples – yoghurt and dahi), Cheese products (rennet curd, acid curd, acid-heat coagulated – one example each)	
4.	Modern trends in food technology: Functional foods; Biofortication; Nutraceuticals; Gut microbiome; Probiotics and prebiotics; Processed and convenience foods; Space foods; Food fortification, Hydroponics.	
	Unit 3: Fermentation Technology	15 L
1.	Primary screening, secondary screening, inoculum and Screening, inoculum and strain development strain development. Scale up, scale down	
2.	Wine and Beer: Introduction, manufacturing/processing, spoilage.	
3.	Malo-lactic fermentation, Industrial Fermentations Production of : Penicillin, Streptomycin, Vinegar, Citric acid Single cell protein (Mushroom). Solid state fermentation.	
4.	Introduction of DSP: Foam separation, Types of Precipitation, Downstream processing Filtration, Centrifugation, Chromatography in DSP Cell disruption- physical and chemical methods. Solvent recovery, Membrane processes, Drying, Crystallization and Whole broth processing. Mammalian cell bioreactors (e.g. production of monoclonal antibodies).	

CA	1. CA1 – Written test.
(Continuous	 CA 2 – Model making (processes).
Assessment)	
Defenerees	1 Adams M. P. Mass M. O. and McChurz P. (2016). Easd Misrobiology
References:	1. Adams M. R., Moss M. O. and McClure P. (2016). Food Microbiology.
	4 th Edition. Royal Society of Chemistry.
	2. Mehta V. (2006). Food Biotechnology. Campus Books International.
-	3. Canon B. (2014). Fundamentals of Food Biotechnology. Agrotech Press.
	4. SriLakshmi B. (2010). Food Science. 5th Edition. Newage International
	Publishers.
	5. Marth E. H., and Steele J. L. (2005). Applied Dairy Microbiology. 2 nd
	Edition. CRC Press.
	6. Frazier W. C., and Westhoff D. C. (2014). Food Microbiology. 5 th
	Edition. McGraw Hill Education.
	7. Waites M. J., Morgan N. L., Rockey J. S., and Higton G. (2002). Industrial
	Microbiology – an introduction. Blackwell Publishing.
	M Sere /1/
	SA diama /JU/
	NWN CONTRACTOR / W/

Will

SBT304	Environmental Biotechnology	3 Credits
Learning Objectives	 To acquaint students with basic concepts in water potability and assessment of water quality using various laboratory methods. To enable the student understand significance and methods of effluent, solid waste and industrial waste management. To provide a basic understanding of environmental biotechnology. 	
Course description	Through this course the students will develop understanding of the co water and assessment of water quality. Further they will be acquainted ways of treatment of Municipal waste water, industrial waste and sol management. At the end of this course, the student would be able to understand the pollution, hazardous effects of pollution on human life and environm modern methods of for environmental conservation.	ed with various id waste e sources of
	THEORY CAN	(45 lectures)
Sub Unit	Unit 1: Water Biotechnology	15 L
1.	Potable water- Meaning and concept , Current BIS guidelines, Water standards applicable in western countries like USA, UK.	
2.	Assessment of quality of water, MPN, Confirmatory and completed test, Fecal contamination of water;	
	Newer techniques of potable Water purification- UV, Sand filters,	
3.	Effluent treatment Treatment Types- primary treatment: Meaning and significance Monitoring criteria - pH, temp, TSS, TDS, TS, BOD, COD and heavy metals. Case study (Ganga) Primary treatment Methods, Precipitation, Flocculation, Sedimentation tank Secondary treatment Methods– Microbiological treatment, oxidation ponds, Lagoons, Imnhoff tank Tertiary treatment methods- modern approaches in effluent treatment. Practical challenges in decreasing TDS (zero	
4.	Solid waste management- bio gas technology; Composition of biogas and Deenbandhu Biogas plant. Biocompost, Vermicompost.	

	Unit 2: Industrial waste management	15 L
1.	Hazards associated with untreated waste	
	Impact on human life and environment; Case studies	
2.	Industrial Waste- Characteristics and Nature	
	Treatment approaches for various industrial waste;	
	Pharmaceutical waste treatment	
	Treatment of Dairy industry waste	
	Treatment of Brewery, winery and Distillery industry waste	
- r	Treatment of Paper and pulp waste	1
	Treatment of Oil refinery waste	
	Treatment of wastes from Dye industry	
	Treatment of wastes from Textile industry.	
	Electronic waste management	
	(Use of case studies to understand implications of untreated waste	
	water)	
	Unit 3: Current Trends in Environmental Biotechnology	15 L
1.	Bioremediation- Phytoremediation and microbial remediation. GMOs in bioremediation, Superbug <i>Pseudomonas</i> .	
2.	Production, application, advantages and limitations of Biofertilizers and Biopesticides,	
	Petrocrops, Biofuels, Ethanol as a green fuel.	
	Biopolymers and Bioplastics.	
3.	 Concept of air, water and soil pollution; Climate change; Soil and Water scarcity, Oil spills. Conservation practices- needs and methods , newer approaches Sustainable development- Meaning, concept and methods. Vertical gardens, Recycling, Replacing non biodegradable plastics. Concept of Carbon foot print and carbon credit 	

СА		1. CA1- Written test
(Continuous Assessment)		2. CA 2- Report writing, case study
References:	1.	Pelczar M.J., Chan E.C.S., Kreig N.R. (2006). Microbiology. 6th Edition. The Mc
		Grew Hill Companies Inc., NY.
-	2.	Willey J. M., Sherwood L., Sherwood L. M., Woolverton C. J., Woolverton C.
		Prescott's Microbiology. (2010). 8th Edition. McGraw Hill.
	3.	Fulekar M. H. (2010). Environmental Biotechnology. CRC Press.
~	4.	Indu Shekhar Thakur Industrial Waste Management

SBT305	Bio-organic Chemistry	3 Credits
Learning Objectives	 To familiarize students with pathays leading to breakdown of Molecules in cellular environment To provide a clear understanding of energy transactions invol molecular catabolism To impart knowledge related to Enzyme kinetics 	-
Course description	The Molecules of Life course is designed to impart basic knowledge cellular catabolism of different organic Biomolecules. The students v an understanding of cellular energetic and the role of regulatory enzy catabolism. At te end of this course the students will develop greater enzyme kinetics. These vital bioorganic compounds play indispensable functions in th comprehensive understanding of basics of catabolism of Biomolecul kinetics, will prepare students for a future career in industry, research entrepreneurial endeavour.	wll also develop ymes in understanding of e cell. Hence a es and enzyme
	THEORY	45 lectures
Sub Unit	Unit 1: Biomolecules: Carbohydrates Catabolism	15 L
1.	i. Emp pathway and Energeticsii. Role of PDH complexiii. HMP shunt and role of NADP	
2.	i. TCA cycle and Energeticii. Amphibolic nature of TCAiii. Significance of TCA in Metabolism	
3.	 i. OP and SLP ;Role in cellular energetics ii. ETC- Organization, components, and complexes iii. Enzymes linked to ETC 	
	Unit 2: Biomolecules: Lipid Catabolism	15 L
1.	i. Lipolysis; Lipase actionii. Transport and activation of fatty acids	
2.	 i. β- Oxidation and energetics ii. α-Oxidation iii. ω- Oxidation 	
3.	i. Oxidation of unsaturated fatty acids	

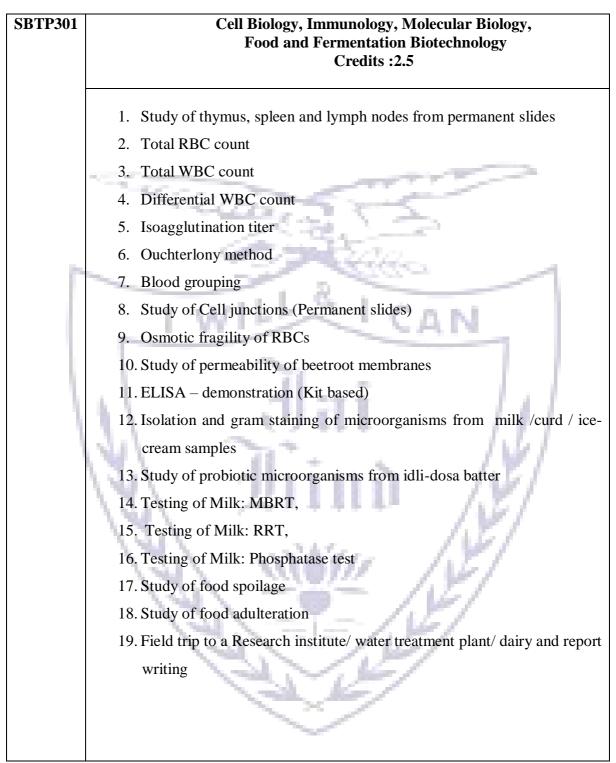
	Unit 3: Enzyme kinetics	15 L
1.	 i) Concepts in enzyme kinetics; ii) Effect of enzyme and substrate concentrations on the rate of an enzyme catalysed reaction, iii) Derivation of Michaelis- Menten equation iv) Lineweaver Burke plot, v) Concept and Significance of V max and Km, 	
2.	 i) Enzyme inhibition: Reversible and irreversible inhibition ii) Competitive, Noncompetitive, Uncompetitive and mixed inhibition Applications of enzyme inhibition. 	1
3.	 i. Reaction mechanism for chymotrypsin, Hexokinase Enolase, and Lysozyme ii. Regulatory enzymes – role in metabolic pathways with examples iii. Enzyme purification (use of IU); specific activity; Immobilised enzymes. 	
CA (Continuous Assessment)	 CA1- Written test A 2- Presentations / Survey / Debate 	
References:	 Nelson D. L., and Cox M. M. (2008). Lehninger Principles 5th Edition. W H Freeman and Company. Murray R. (2017). Harper's Illustrated Biochemistry, 27Th Publication. Voet D., and Voet J. (2008). Biochemistry. John Willey and S Satyanarayana U. and Chakrapani U. (2007). Biochemis Books and Allied (P) Ltd. Berg J and Stryer L. (2012). Biochemistry. 7Th Edition. W. company, NY. Conn E. E. and Stumpf P. K. (1987). Outlines of Biochemi Willey Eastern Limited. 	¹ Edition, Lange Sons, Inc. USA. try. 3 rd Edition. H. Freeman and

SBT306	Methods in Analytical Chemistry	3 Credits
Learning Objectives	 To provide an understanding of spectroscopic techniques To acquaint students with fundamentals in techniques used in studying biomolecules like nucleic acids and proteins suing electrop To train the student in the principles and applications of Centrifugat 	bhoresis
Course description	This course is designed to enable the student understand principles Spectroscopy, electrophoresis and Centrifugtion.	and applications of
	THEORY	(45 lectures)
Sub Unit	Unit I: Spectroscopy	15 L
1.	Introduction: Types and properties of spectra; Basic Laws of light absorption	
2.	Spectrophotometer: Principle, basic Instrumentation Applications of Spectroscopy in research and industry Precautions while using spectroscopy Comparison of colorimeter and spectrophotometer	
3.	UV-Vis Spectrophotometer, Single and Dual Beam Spectrophotometer.	
4.	Other types of spectroscopy – Mass Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Acoustic Resonance Spectroscopy; IR; Atomic; Raman Spectroscopy.	
Sub Unit	Unit II: Electrophoresis	15 L
1.	Electrophoresis; concept and basic principles; Migration of ions in an applied electric field; Factors affecting electrophoretic mobility; Moving boundary electrophoresis.	
2.	Concept and types of support matrix; Paper electrophoresis, AGE, native PAGE, SDS-PAGE, Continuous and discontinuous electrophoresis IEF and 2D gel electrophoresis(just overview)	
3.	Gel documentation system. Applications of electrophoresis in academics, research and industry.	

Sub Unit	Unit – III: Centrifugation	15 L
1.	Introduction: Principle of centrifugation.	
2.	Rotor design and selection. Preparative centrifugation - differential, rate-zonal, isopycnic, equilibrium isodensity centrifugation with applications.	
3.	Density gradient centrifugation – nature of gradient, formation, sample application and collection.	
CA	1. CA1 - Written test	
(Continuous	2. CA 2 – Assignments (application based)	
Assessment)		-1
References:	 Wilson K., and Walker J. (2010). Principles and Techniques of and Molecular Biology. 7th Edition. Cambridge University Press. Plummer D. T. (1988). An Introduction to Practical Biochemistr Tata McGraw-Hill Publishing Company Ltd. Upadhyay A., Upadhyay K. and Nath N. (2016). Biophysical Principles and Techniques. Himalaya Publishing House. Morrison R.T., Boyd R.N., and Bhatacharjee S.K. (2011). Orga 7th Edition. Pearson Education Solomon T.W.G. and Fryhle C.B. (2008). Organic Chemistry. 9th Wiley & Sons. 	ry. 3rd Edition. Biochemistry: nic Chemistry.

SBT307	Scientific Research Methodology	3 Credits
Learning Objectives	 To inculcate research aptitude and to provide basic understanding of To acquaint students with basic principles and scope of Research through actual process To enable student understand the application of computational to research and presentation 	h Methodology
Course description	This course is designed to enable the student understand the meaning research To enhance their research aptitude and motivate them to undertake stepwise building an understanding of research project. To inculcate through computational tools. THEORY	a research project,
Sub Unit	Unit 1: An introduction to Research	15 L
1.	Meaning of research Need and general objectives of research Significance of research (emphasis on Biotechnology) Motivation in Scientific research, criteria of good research	
2.	Types of research and Research approaches Research Methods and methodology Scientific methods of research and research process	
3.	Current Research-Indian scenario, Latest trends and major contributors in biotechnology research	
Sub Unit	Unit 2: Scientific Research Methodology	15 L
1.	Research Problem- Definition and Selection of a Scientific problem Techniques of defining a research problem (Explain using conventional and modern illustrations).	
2.	Research design- Meaning and need of research design Principles and features of a good design Important concepts for developing a research plan	

N n a	Experimental plan and design Methods of collection of primary data-Observation method, interview method and design, questionnaire method and design, Other approaches for primary and secondary data, Case study method Designing a Research project - Hands on.	
	Designing a Research project - Hands on.	
Sub Unit		
Sub emit	Unit – III: Scientific Research report writing	15 L
Ν	Basic skills in computers. Computer software and hardware (overview). MS Office – Word, Excel, Power Point (Only practical). Internet and prowsing.	
F C F ta	Publication basics: meaning, types, referencing, online resources. Report writing and scientific paper writing – precautions, bibliography. Oral scientific presentations – Use of power point, videos, animations. Poster presentations – designing presentations using power point, ready emplates and basics of coral draw. Ethical issues in research publications – plagiarism: meaning, types and consequences, case studies.	1
F	Online Resources: PubMed, Researchgate, J-Gate, PMC. How to read a research paper. Submission of Research project report and presentation.	
	WI THE IV	/
CA	1. CA1 – Written test	
(Continuous Assessment)	2. CA 2 – Research Projects	
References:	 Kothari C. R., and Garg G. (2015). Research Methodology - techniques. 3rd Edition. New Age International Publishers. 	- Methods and
	2. Online resources.	


SEM III Biotechnology Practical Syllabus

Academic year 2018-2019

Course	Course Title	Credits
Code		
SBTP301	Cell Biology, Immunology, Molecular	2.5
	Biology, Food and Fermentation	
	Biotechnology	
SBTP302	Environmental Biotechnology, Bioorganic	2.5
	and Analytical Chemistry	

Semester I – Practical

SBTP302	Environmental Biotechnology, Bio-organic and Analytical Chemistry Credits :2.5
	1. Water analysis- Total count/ Viable count/ Heterotrophic count
	2. Water potability tests
	3. Chemical tests for water potability
	4. MPN- Presumptive, Confirmatory, Completed tests
	5. Analysis of fecal contamination of water- study of anaerobes
	6. BOD
	7. COD
	8. Study of air microflora
	9. Winogradsky's column
	10. Determination of Soil pH
	11. Contact slide technique
	12. Study of nitrifiers and nitrosifiers using chemical and microbiological
	methods
1	13. Determination of serum cholesterol
	14. Determination of optimum pH of jackbean urease/ Sweet potato
	amylase
	15. Determination of optimum temperature of jackbean urease/ Sweet
	potato amylase
	16. Effect of substrate variation on the rate of amylase catalysed reaction.
	17. Determination of Km, and Vmax using MM Plot
	18. Determination of Km, and Vmax using LB plot
	19. Study of inhibitor action on the rate of amylase catalyzed reaction
	20. Preparation of buffers- acetate, Phosphate, bicarbonate and Tris
	21. Demonstration of PAGE
	22. Demonstration of AGE
	23. Staining reagents used in electrophoresis-Composition of Coomasie
	Brilliant blue, silver nitrate, Ethidium Bromide, Gel Red, Ponceau.
	24. Density Gradient Centrifugation

Evaluation Scheme

[A] Evaluation scheme for Theory courses

I. Continuous Assessment (C.A.) - 40 Marks

- (i) C.A.-I : Test 20 Marks of 40 mins. duration
- (ii) C.A.-II : Assignment/Projects/ Presentations etc

II. Semester End Examination (SEE)- 60 Marks

[B] Evaluation scheme for Practical courses

- (i) Internal Practical
- (ii)Semester End Practical