

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE & LT.LAI VANI COLLEGE OF COMMERCE

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: B.Sc

Proposed Course: Biotechnology

Semester I

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2020-21

F.Y.B.Sc. Biotechnology Sem I Syllabus Academic year 2020-2021

Semester 1			
Course code	Course Title	Credits	Lectures /Week
SBT101	Introduction to Biotechnology	2	3
SBT102	Genetics	2	3
SBT103	Biodiversity and Experimental models	2	3
SBT104	Techniques in Biological Sciences	2	3
SBT105	Fundamentals In Chemistry I	2	3
SBT106	Fundamentals In Chemistry II	2	3
SBTP101	Introduction to Biotechnology and Genetics	2	6
SBTP102	Biodiversity, Experimental models And Techniques in biological sciences	2	6
SBTP103	Fundamentals In Chemistry I & II	2	6

Semester I – Theory

Course Code: SBT101	Introduction to Biotechnology (Credits: 02, Lectures/Week: 03)	02 Credits
Learning Objectives	 To acquaint students with the various fields in Biotechnology To provide an overview of the different applications of Biotechnology To offer an understanding of basics of Fermentation Techniques 	
Course description	At the end of this course, the student would have a good understanding of the field of Biotechnology, its scope and applications. Also, the student will be well familiar with a very important aspect viz. Fermentation Techniques which are most widely used in industry.	
	THEORY	(45 lectures)
Sub Unit	Unit – I: Scope and Introduction to Biotechnology	15 L
	 a) Introduction i) Definition. ii) History of Biotechnology. iii) Traditional and Modern Biotechnology. b) Branches of Biotechnology (Red Biotechnology, White Biotechnology, Blue Biotechnology, Green Biotechnology) i) Medical Biotechnology. ii) Industrial Biotechnology. iii) Marine and Aquatic Biotechnology. iv) Agricultural Biotechnology. v) Environmental Biotechnology c) Milestones in Biotechnology d) Current scenario in India and the world e) Biosafety and Ethics in Biotechnology 	
	Unit – II: Applications of Biotechnology	15 L
	 a) Agriculture i) Biotechnological applications in crop and livestock improvements ii) Modifications in Plant Quality - Golden rice; Hybrid crops iii) Molecular Pharming, Plant based vaccines b) Environmental Biotechnology i) Renewable energy resources ii) Bioremediation c) Industrial Biotechnology i) Food Biotechnology ii) Biopharmaceutical Applications d) Advances in Biotechnology 	

	i) COVID-19 World pandemic
	ii) Human Genome Project
	iii) Animal Cloning
	iv) Genetic counselling and Gene therapy
	,
	v) Diagnostics and therapeutic molecules
	Unit – III: Introduction to Fermentation Technology 15 L
	 a) History of Fermentation i) History of Fermentation technology ii) Major contributors of fermentation techniques b) Fermentation: Design and systems iii) Design of a basic fermentor iv) Baffles, Spargers, Impellers v) Mechanically agitated and Pneumatically agitated
	bioreactors vi) Unique designs of bacterial and fungal fermentations c) Types of Fermentation methods Microbial growth kinetics
\	Microbial fermentations- Types of fermentation with one example each: Surface, Submerged, Aerobic and Anaerobic fermentation, Solid state fermentation. d) Applications of Fermentation Technology: (Flow-sheet format) Antibiotics, Vaccines, Enzymes and Beverages.
	Develages.
CA (Continuous Assessment)	 CA1- Written test CA2 –Case studies
References:	 Dubey R C. (2006). A textbook of Biotechnology. S Chand and Company Ltd. Ramavat K. G., and Gopal S. (2009). Comprehensive Biotechnology. 4Th Revised Edition. S. Chand and Company Ltd. Bhatia S. C. (2005). Textbook of Biotechnology. Atlantic Publishers. Kalaichelvan P. T., and Pandi I.A. (2007). Bioprocess Technology. MJP Publishers. McNeil B., and Harvey L. M. (1990). Fermentation – A practical approach. Oxford University Press. Puvanakrishnan R., Sivasubramanian S., and Hemalatha T. (2012). Microbial Technology – Concepts and applications. MJP Publishers. Casida L E. (1968). Industrial Microbiology. John Wiley and Sons. Patel A H. (1984). Industrial Microbiology. Macmillan India Ltd. Stanbury P., Whitaker A., and Hall S. (1995). Principles of Fermentation Technology. 2nd Edition. Butterworth Heineman.

Course Code: SBT102	Genetics (Credits: 02, Lectures/Week: 03)	02 Credits
Learning Objectives	 To acquaint students with concepts in Genetics To understand the concept of heredity and variation To reinforce the structure and organization of genetic materia To establish a clear knowledge of the role of genetic material viruses in genetic analyses: Plasmids, cosmids, transposons. 	
Course description	At the end of this course, the student would be equipped with the known understanding of the basic concepts in eukaryotic and prokaryotic ge will also develop an insight of basic concepts of experimental method used in Genetics studies.	netics. Students ds and tools
	THEORY	(45 lectures)
Sub Unit	Unit – I: Fundamentals of Genetics	15 L
1.	 a) Mendel's Law of Heredity i) Monohybrid Cross: Principle of Dominance and segregation ii) Dihybrid Cross: Principle of Independent Assortment iii) Trihybrid Crosses iv) Rediscovery of Mendel's principles v) Applications of Mendel's Principle; Punnett Square vi) Mendel's Principle in Human Genetics, vii) Pedigree analysis viii) Examples of Human Genetic traits b) Extension of Mendelian Genetic Principles; Incomplete Dominance and Co-dominance i) Genotype and Phenotype 	
	Unit – II: Structure and Organization of Eukaryotic Genetic Material	15 L
1.	 a) Structure of Eukaryotic Chromosomes i) Structure of Chromosomes ii) Shapes of metaphase chromosomes iii) Histone and non-histone proteins b) Packaging of DNA i) Nucleosome structure ii) Packing of DNA into chromosome c) Chromosome study - Chromosome banding - Types d) Karyotype Analysis i) Study of human karyotype 	

	ii) Study of genetic abnormalities (Turner's Syndrome, Klinefelter's syndrome, Down's Syndrome, Cri-du-chat Syndrome, Philadelphia Syndrome)
	Unit – III: Microbial Genetics 15 L
1.	a) Structural characteristics of Bacterial and Viral chromosomes i) Bacterial Chromosome ii) Phage Chromosome b) Genetic analysis of bacteria i. Prototrophs and Auxotrophs (wild type and nutritional mutants) ii. Use of selective media in isolation of mutants c) Bacteriophages and other carriers i) Terminology associated with Bacteriophage ii) Types of bacteriophage iii) Lytic and Lysogenic cycle iv) Development of a phage in a host d) DNA and RNA viruses e) Introduction to other carriers like Plasmids, cosmids and transposons
CA (Continuous Assessment)	 CA 1- Written test CA 2 – Infographics
References:	 Russell P. J. (1998). Genetics. 5th Edition. Benjamin/Cummings Publishing Company Inc. Russell P. J. (2016). Essential iGenetics. 3rd Edition. Pearson Education Gardner E., Simmons M., and Snustad D.P. (1991). Principles of Genetics. 8th Edition. John Wiley and Sons Inc. Maloy S. R., Cronan J. E., and Freifelder D. (2006). Microbial Genetics. 2nd Edition. Narosa Publishing House.

Course Code: SBT103	Biodiversity and Experimental Models (Credits: 02, Lectures/Week: 03)	02 Credits
Learning Objectives	 To acquaint students with concept of diversity in Biology, parrelation to plant, animal, and microbial diversity. To introduce the various types of experimental models used in Sciences To study the role of the ecosystem and the various interaction. 	n Biological
Course description	At the end of this course, the student would have the knowledge of the biodiversity. The student will learn about some popularly used mode their role in understanding Biological processes. Also the student shounderstand the constitution of the ecosystem and appreciate the impovarious interactions of the ecosystem.	l organisms and ould be able to
	THEORY	(45 lectures)
Sub Unit	Unit — I: Biodiversity - I	15 L
1.	 a) Biodiversity i) Concept of biodiversity ii) Taxonomical, Ecological and genetic diversity and its significance b) Introduction to plant and animal diversity c) Introduction to microbial diversity (Structure, Habitats, Examples & Applications) i) Eubacteria ii) Archaebacteria 	
	Unit – II: Biodiversity - II	15 L
1.	a) Introduction to microbial diversity (Structure, Habitats, Examples & Applications) i) Protists ii) Viruses b) Bacteria i) Classification, Types and morphology (size, shape and arrangement) ii) Reproduction & growth- Binary fission, conjugation and endospore formation iii) Significance and uses of bacteria c) Biotechnology in Biodiversity conservation i) Field Gene Banks ii) Seed Banks iii) Pollen Banks iv) DNA Banks v) Germplasm preservation: Cryobiology d) Biotechnology in enrichment of Biodiversity	

	Unit – III: Experimental Models	15 L
1.	a) Significance and criteria for selection b) Eukaryotic experimental organisms i) Drosophila melanogaster ii) Albino mouse iii) Guinea pig iv) Hamster v) Monkey vi) Saccharomyces cerevisiae vii) Neurospora crassa viii) Zea mays ix) Pisum sativum c) Prokaryotic experimental organisms i) Escherichia coli ii) Caulobacter crescentus	1
CA (Continuous Assessment)	CA1- Written test CA2- Case studies	
References:	 Ramavat K. G., and Gopal S. (2009). Comprehensive B 4Th Revised Edition. S. Chand and Company Ltd. Willey J. M., Sherwood L., Sherwood L. M., Woolv Woolverton C. Prescott's Microbiology. (2010). 8th Edition. It is a santra S. C. (2011). Environmental Science. 2nd Edition. Book Agency (P) Ltd. Odum E. P., and Barrett G. W. (2005). Fundamentals Thomson Brooks/Cole. Verma P. S., and Agarwal V. K. (1983/2016Rp). Environmental Principles of Ecology. S. Chand and Company Pvt. Ltd. Russell P. J. (1998). Genetics. 5th Edition. Benjamin/Cummin Company Inc. Russell P. J. (2016). Essential iGenetics. 3rd Edition. Pearson Gardner E., Simmons M., and Snustad D.P. (1991). Principles 8th Edition. John Wiley and Sons Inc. 	McGraw Hill. New Central of Ecology. ental Biology: gs Publishing Education.

Course Code: SBT104	Techniques in Biological Sciences (Credits: 02, Lectures/Week: 03)	02 Credits
Learning Objectives	 To provide a basic understanding of the need and methods of To impart skill in handling and culture of Microorganisms To reinforce the use of microscope and study the various type staining methods to be used for visualization of specimens. 	
Course description_	At the end of this course, the student would be equipped with the known understanding of the basic skills in laboratory techniques viz. sterilized microbial cell culture & cell lines techniques, microscopy and staining view specimens under a microscope.	ation,
-	THEORY	(45 lectures)
Sub Unit	Unit – I: Sterilization Techniques	15 L
1.	 a) Sterilization and Disinfection Definitions of and differences between Sterilization and disinfection Applications of sterilization and disinfectants in Biological sciences. Physical agents- Sunlight, Drying, heat, Steam under pressure, Gases, Radiation and filtration Chemical agents and their mode of action- Phenol and Phenolic compounds; Aldehydes, Halogens, Quaternary Ammonium compounds, heavy metals, Alcohols and Detergents Ideal Disinfectant - examples and evaluation of disinfectants 	
	Unit – II: Microbial Cell Culture Techniques	15 L
1.	 a) Microbial Cell Culture Techniques i) Nutrition and Cultivation of microorganisms- Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorous, Sulphur & Growth factors ii) Classification of different nutritional types of organisms b) Design and types of culture medium i) Liquid and Solid media, ii) Simple/ basal media and complex media, iii) Synthetic, Enriched, Enrichment media, iv) Selective, differential and indicator media v) Sugar media, transport media vi) Anaerobic media 	

	 c) Concept of isolation and methods of isolation, pure culture techniques d) Culturing anaerobic organisms e) Preservation of microbial cultures- Principle & methods
	Unit – III: Microscopy and Staining Techniques 15 L
1.	 a) Microscopy- Introduction, Definition, general applications in biological sciences b) Types of microscopy i) Light or Optical Microscope Simple and Compound microscopes. Principle, parts, functions and applications ii) Phase contrast microscope iii) Dark field/ Dark ground microscope c) Stains and staining solutions i) Definition of Dye and Chromogen ii) Structure of Dye and Chromophore iii) Functions of mordant and fixatives iv) Natural and synthetic dyes v) Simple staining, Differential staining and Acid fast staining with examples
CA (Continuous Assessment)	 CA 1- Written test CA 2- Market survey
References:	 Pelczar M.J., Chan E.C.S., Kreig N.R. (2006). Microbiology. 6th Edition. The Mc Grew Hill Companies Inc., NY. Willey J. M., Sherwood L., Sherwood L. M., Woolverton C. J., Woolverton C. Prescott's Microbiology. (2010). 8th Edition. McGraw Hill. Ananthanarayan R. and Panikar C. K. J. (2009). Textbook of Microbiology. 8Th Edition. Universities Press.

Course Code: SBT105	Fundamentals in Chemistry – I (Periodic table and Periodicity of elements, Concepts in Organic Nomenclature, Chemical bonding) (Credits: 02, Lectures/Week: 03)	02 Credits
Learning Objectives	 To provide an overview of the Periodic Table and specifically important in Biological systems. To acquaint students with basic concepts of Chemistry II and Nomenclature of organic compounds. To study the nature and role of water and buffers in relation system. To equip the student with skills required for calculations solutions of various concentrations and strengths. 	to the biological
Course description	At the end of this course, the student would be well versed we chemical elements with special emphasis on Biologically active elements. The Nomenclature of organic compounds (with special emphasis molecules and industrially important compounds). Also, an overview of the Nature and role of water and buffers is being the student appreciate the importance of the various buffer states.	nents. s on Bio-organic ing introduced to
Sub Unit	applicability in Biotechnology. THEORY	(45 lectures)
Sub Unit 1.	a) Long form of Periodic Table i. Classification of elements ii. Transition elements; and iii. Inner transition elements b) Periodicity in properties of elements: (Simple Numerical problems based on topic to be covered) i. Ionic size and Atomic size ii. Ionization gain enthalpy iii. Electron enthalpy iv. Slater's rule; Effective nuclear charge v. Electronegativity: Pauling, Mulliken and Alred Rochow electronegativity	15 L
Sub Unit	Unit II: Nomenclature of Organic compounds	15 L
1.	 a) IUPAC Nomenclature and Classification of organic compounds i) Alkanes ii) Alkenes iii) Alkynes 	11

	iv) Cyclic Hydrocarbons/Alicyclic Hydrocarbons	
	v) Aromatic compounds vi) Alcohols and Ethers	
	vii) Carboxylic acids and its derivatives	
	viii) Amines and Amides	
	ix) Alkyl Halides x) Heterocyclic compounds	
2.	a) Applications of organic molecules	
2.	i) Applications of organic compounds in biological sciences-	
	Brief concept of bioorganic molecules ii) Industrial applications of organic compounds	
3.	a) Electronic Effects of organic compounds	
	i) Inductive Effect ii) Electromeric Effect	
-	iii) Mesomeric Effect	
	iv) Hyperconjugative Effect v) Resonance	
Sub Unit	Unit III: Chemical Bonding	15 L
1.	a) Ionic Bond	
- 1	i) Nature of Ionic bond	
1.	ii) Structure of NaCl, KCl and CsCl iii) Factors influencing the formation of ionic bonds	
2.	a) Covalent Bonds	
- \	i) Nature of covalent bond	
	ii) Structure of CH ₄ , NH ₃ , H ₂ O	
3.	Coordinate Bonds - Nature of coordinate bond	
4.	Non-covalent Bonds – Van Der Waal's Forces: Dipole-dipole and	
	dipole-induced dipole	
5.	a) Hydrogen Bonds	
	i) Theory of Hydrogen bondingii) Types of Hydrogen bonding with examples: RCOOH, ROH	
	iii) Salicylaldehyde, Amides and Polyamides	
CA	1. CA 1 – Written test	
(Continuous	2. CA 2 – Model	
Assessment)		

References:

Unit 1:

- 1. Shriver, D. F. and Atkins, P. W. 1999, *Inorganic chemistry*, 3 rd Ed., Oxford University Press,
- 2. Jolly, W. L., 1993, Modern inorganic chemistry, McGraw Hill Book Co.
- 3. Douglas, B. E. and McDaniel, H., *Concepts and models in inorganic chemistry*, 1994,3 rd Ed., John Wiley & Sons, Inc., New York,
- 4. Huheey, J.E., 1993, *Inorganic Chemistry*, Prentice Hall.
- 5. Lee, J.D., 1993, Concise Inorganic Chemistry, ELBS
- 6. Shriver D. F. & Atkins P. W., 1994 *Inorganic Chemistry*, third Edition, Oxford press

Unit 2

- 1. Morrison, R. T.; Boyd, R. N. 2012. *Organic Chemistry*. Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Finar, I. L. 2012. *Organic Chemistry (Volume 1)*. Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. Solomons, T.W.G. 2009. Organic Chemistry. John Wiley & Sons, Inc.

Unit 3

- 1. Bahl, Tuli and Anand, Advanced Inorganic Chemistry, Volume I and II
- 2. Prakash,S., Tuli, G.D., Basu, S.K., Madan, R.D., *Advanced Inorganic Chemistry*, Volume I
- 3. Shriver, D.F., P.W. Atkins, C. H. Langford, 3rd edition, *Inorganic Chemistry*, Oxford University Press
- 4. Lee, J.D. Concise Inorganic Chemistry, (1991), ELBS
- 5. Douglas, B.E. and McDaniel, D.H., (1970), Concepts & Models of Inorganic Chemistry
- 6. Day, M.C. and Selbin, J., (1962), *Theoretical Inorganic Chemistry*, ACS Publications
- 7. James E. Huehey, *Inorganic Chemistry*, (1983), Harper & Row Publishers, Asia.

Course Code: SBT106	Fundamentals in Chemistry – II (Thermodynamics, Stereochemistry and Water and Buffers) (Credits: 02, Lectures/Week: 03)	02 Credits
Learning Objectives	 To acquaint students with the concepts and Thermodynamics. To build concepts in Stereochemistry by providing an unrelative spatial arrangement of atoms in molecules. To help students understand the types and significance of order. 	
Course description	This Course is designed to impart basic knowledge Thermodynamics. The students will be able to understand Stereochemistry of and their practical significance The student will also be able to appreciate the nature and role in the formation of compounds. This is followed by an empapplications.	organic molecules of chemical bonds
	THEORY	(45 lectures)
Sub Unit	Unit I: Thermodynamics	15 L
1.	 a) Introduction i) System, surrounding, boundaries, sign conventions, State Functions ii) Internal Energy and Enthalpy: Significance, examples iii) (Numerical expected) 	
2.	 a) Thermodynamics i) Laws of thermodynamics and limitations, Mathematical expression ii) Qualitative discussion of Carnot cycle for ideal Gas and Mechanical efficiency iii) Laws of Thermodynamics as applied to biochemical systems iv) Concept of entropy, Entropy for Isobaric, Isochoric and Isothermal processes 	
Sub Unit	Unit II: Stereochemistry	15 L
1.	 a) Isomerism i) Types of isomerism- chain, position and functional ii) Stereoisomerism iii) Chirality 	

2.	 a) Geometric Isomerism and Optical Isomerism i) Enantiomers ii) Diastereomers iii) Racemic mixtures- cis-trans, Threo, Erythro and meso isomers iv) Diastereomerism (cis-trans isomerism) in Alkenes and cycloalkenes v) Cycloalkenes (3and 4 membered ring)
3.	 a) Conformation i) Conformations of ethane ii) Difference between configuration and conformation
4.	a) Configuration i) Asymmetric Carbon atom ii) Stereogenic & Chiral centres iii) Chirality iv) Representation of configuration by "Flying Wedge" formula
5.	a) Projection Formulae i) Fischer, Newman and Sawhorse ii) The interconversion of the formulae
Sub Unit	Unit III: Water and Buffers 15 L
1.	a) Chemistry of Water i) Properties of Water ii) Interaction of water with solutes -polar, non-polar and charged iii) Non- polar compounds in water - change in its structure & hydrophobic effect iv) Role of water in biomolecular structure and function v) Water as a medium for life
2.	a) Solutions i) Normality ii) Molarity iii) Molality iv) Mole fraction v) Mole concept vi) Solubility vii) Weight ratio, volume ratio, and Weight: Volume ratio, concentration v/s amount, standard abbreviations viii) Ppb, ppm, micrograms, nanograms, millimoles and milliequivalents (numerical expected)

4.	 a) Acids and bases i) Lowry-Bronsted and Lewis concepts ii) Strong and Weak acids and bases iii) Ionic product of water: pH, pKa, pKb iv) Hydrolysis of salts
5.	 a) Buffer solutions i) Concept of buffers ii) Types of buffers iii) Derivation of Henderson equation for acidic and basic buffers iv) pH of buffer solution v) Blood buffer system
CA Continuous Assessment	 CA 1 - Written test CA 2 - Problems
References:	 Unit 1 Puri, B. R., Sharma, L.R., and Pamania, M.S. (2017). Physical Chemistry, 47th Edition, Vishal Publishing Company. Kapoor, K.L. (2006). Textbook of Physical Chemistry.

SEM I Biotechnology Practical Syllabus

Academic year 2020-2021

Course	Introduction to Biotechnology and Genetics
Code: SBTP101	Credits: 02 Practical /Week: 02
-	To familiarise students with Biotechnology lab set up and common lab glassware
Learning Objectives	 To acquaint students with the principles, applications and working of instruments like pH meter, water bath, vortex, Hot air oven Autoclave, centrifuge and others
	To enumerate bacterial and fungal cells using micrometer
	To isolate DNA from plant root tips using chemical method
	To study DNA and RNA using qualitative tests
	To solve problems in genetics
\	To understand and study karyotype
1	 Introduction to Biotechnology Laboratory Introduction to glassware used Introduction to common laboratory instruments
	Electronic Balance, pH Meter, Water Bath, Hot air Oven, Autoclave, Incubator, Rotary Shaker, Vortex mixer, Centrifuge
	4. Meat tenderization using papain
	5. Fermentative production of alcohol6. Enumeration of microbes using micrometer stage slide
	7. Microscopic determination of yoghurt/ milk microbial flora
	8. Qualitative analysis of DNA by DPA method
	 Qualitative analysis of RNA by Orcinol method Isolation of gDNA from onion sample
	11. Study of Karyotype
	12. Problems on Mendelian Genetics
	13. Problems on Gene Mapping14. Visit to a Biotechnology Institute /Industry and report writing.

Course	Biodiversity, Experimental models and Techniques in Biological Sciences
Code: SBTP102	(Credits: 02 Practical/Week: 02
	To examine permanent slide and characterize BGA microscopically
Learning	To study algae using enrichment method
Objectives	To carry out slide culture technique for Nocardia and Streptomyces
	 To understand the basics of bacteriology using culture techniques and
	microbial media preparation
	To learn to handle microbes using aseptic transfer technique
P-	To learn sterilization technique and study its applications
	 To learn preservation techniques for microbes
	To isolate bacteria using Streak plate / T plate technique
	 Study of permanent slides of BGA Enrichment of Algae. Cultivation of fungi and microscopic examination using lacto cotton phenol blue Slide culture technique of <i>Nocardia</i> and <i>Streptomyces</i> Cultivation of drosophila using various media Differentiation and identification of male and female drosophila from cultured sample Components and working of Simple and Compound microscope Monochrome staining of bacteria (<i>Bacillus</i> and <i>E. Coli</i>) Differential staining- Gram staining Sterilization – Laboratory glassware and media using autoclave Preparation of media – Nutrient Broth, Nutrient Agar, MacConkey Agar, Sabouraud's Broth and Agar Aseptic Transfer technique Isolation of microorganisms: T streaking method Preservation of microorganisms Visit to a nature park / Laboratory and report writing.

Course	Fundamentals in Chemistry I &II
Code:	
SBTP103	Credits: 02 Practical/Week: 02
Learning Objectives	To learn Good practices for a Chemistry lab and familiarize students with safety measures
	To study pH equation and measure pH using pH meter
	To calculate and prepare buffers of choice at a specified pH
	To carry out qualitative analysis of inorganic salts
Pro-	
	To identify functional groups and characterize organic compounds
	LWILL CAN
	To learn chemical titration technique
	71 - 1
	1. Safety measures, accidents, first aid and good practices in chemistry
	laboratory
١.	2. Working and use of a Digital Balance
1	3. Functioning and standardization of pH meter
	4. Preparation of standard solutions – Molar, Molal and Normal
	5. Preparation of buffers6. Determination of strength of HCl and standardization using borax from
	commercial sample
	7. Qualitative analysis of inorganic compounds
	8. Characterization of organic compounds
	a) Containing only C H O as elements (no element test). Compounds
	belonging to following classes
	Carboxylic acid
	Phenol
	Aldehyde/Ketone
	Ester Alcohol
	Hydrocarbon
	b) Containing C H O and N, Halogen as elements (element tests
	to be done). Compounds belonging to following classes
	Amides
	Amines
	Nitro compounds
	Haloalkane
	Dissociation constant of weak acids by incomplete titration method using pH meter.
	10. Determination of enthalpy of dissolution of salt - KNO ₃

Evaluation Scheme

- [A] Evaluation scheme for Theory courses
- I. Continuous Assessment (C.A.) 40 Marks
 - (i) C.A.-I: Test 20 Marks of 40 mins. duration
 - (ii) C.A.-II: Assignment/Project etc
- II. Semester End Examination (SEE)- 60 Marks
- [B] Evaluation scheme for Practical courses
- I. Internal Practical/ continuous assessment
- **II. Semester end Practical Exam**