

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE

&

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

FYBSC Semester 2

Biotechnology

Credit Based Semester and Grading System (CBCS)

With effect from the academic year 2019-20

SEMESTER 2

SBT201	Cell Biology and Plant Physiology	2 Credits
Learning Objectives	 To provide an understanding of the ultrastructure of both preukaryotic cells To acquaint students with Physiological Processes in Plants 	okaryotic and
Course description	At the end of this course, the student will be able to differentiate between prokaryotes and eukaryotes. The student will also have an understanding of the different physiological processes in the eukaryotic living system viz. plants.	
	THEORY	(45 lectures)
Sub Unit	Unit – I: Ultrastructure of Prokaryotic Cells	15 lectures
	 a) Ultrastructure of Prokaryotic cell (Detailed structure, chemical nature, significance and application) Concept of cell shape and size Glycocalyx: slime layer, capsule, Flagella, pilli Cell wall- Gram positive and gram negative (reference to archaebacteria) Cell membrane, mycolic acids, cytoplasm, genetic material, and plasmids Storage bodies, pigments and spores b) Unit – H: Ultrastructure of Eukaryotic cell (Detailed structure, chemical nature, significance and application) Cell wall Plasma membrane Cytoplasmic matrix Microfilaments, Intermediate filaments and microtubules Organelles of the Biosynthetic and secretory pathways - Endoplasmic reticulum & Golgi apparatus Lysosome - Endocytosis, Phagocytosis, Autophagy, Proteasome Wii) Eukaryotic ribosomes Wiii) Mitochondria and plastids 	15 lectures
	 ix) Nucleus- Nuclear structure, Nucleolus x) External cell coverings - Cilia and Flagella xi) Gums and resins b) Comparison of Prokaryotic and Eukaryotic cell 	

	Unit – III: Photosynthetic systems	15 lectures
1.	 Photosynthesis i) Intracellular Organization of Photosynthetic System ii) Fundamental Reactions of Photosynthesis, Photosynthetic Pigments, Role of Light. iii) Hill Reaction and its Significance, Light Reactions, iv) The central Photochemical event; Cyclic and Non- Cyclic Photo induced Electron Flow, v) Role of Cytochrome b₆f vi) ATP synthesis by Photophosphorylation vii) Use of Hydrogen donors by diverse Photosynthetic organisms 	
CA (Continuous Assessment)	CA1- Written test CA 2- Presentations	
References:	 De Robertis E. D. P. (2001). Cell and Molecular Biology. 8th Edition. Lippincott Williams and Wilkins. Karp G. (2008). Cell and Molecular Biology- Concepts and Experiments. 5th Edition. John Wiley and Sons Inc. Powar C. B. (1983). Cell Biology. 3rd Edition. Himalaya Publishing House Pvt. Ltd. Nelson D. L., and Cox M. M. (2008). Lehninger Principles of Biochemistry. 5th Edition. W H Freeman and Company Devlin R.M. (1983). Fundamentals of Plant Physiology. Macmillan, New York. Dutta A.C. (2000). A Classbook of Botany. Oxford University Press, UK. Gangulee H. C., Das K. S., and Datta C. T. (2010). College Botany Vol. I, II and III. 6th Edition. New Central Book Agency Pvt. Ltd. 	

SBT202	Molecular Biology and Genetics	2 Credits
Learning Objectives	 To provide an understanding of the basic molecular proceed the level of its genome To acquaint the student with the concept of replication of Prokaryotes and Eukaryotes To offer an understanding of the concept of Population G 	DNA in
Course description	At the end of this course, the student would be able to fully under molecular structure of DNA and RNA, and comprehend the basis replication of DNA. The student would also be familiar with the genetic variations in populations and the role of population gene Conservation Biology.	ic concept of concept of
	THEORY	(45 lectures)
Sub Unit	Unit – I: Nucleotides and Nucleic acids - Blueprint of Life	15 lectures
	 a) DNA as genetic material b) RNA as genetic material c) Nucleotides i) Definition ii) Structures of Purine and Pyrimidine ring and nucleotides iii) Examples of deoxyribonucleotides and ribonuleotides d) DNA i) Structure based on Chargaff's rule And Watson and Crick model ii) Properties of DNA iii) Forms of DNA e) RNA i) Types of RNA ii) Structure of each type iii)Significance of each type 	
	Unit – II: Replication	15 lectures
1.	 a) History, Central Dogma b) DNA Replication in Prokaryotes Semi-conservative DNA replication DNA Polymerases and its role, <i>E.coli</i> Chromosome Replication BidirectionalReplication of Circular DNA molecules. Rolling Circle Replication c) DNA Replication in Eukaryotes DNA Replication in Eukaryotes DNA Recombination – Holliday Model for Recombination 	

	Unit – III: Population Genetics	15 lectures
1.	 a) Genetic Structure of Populations i) Genotypic Frequencies and Allelic Frequencies ii) Hardy- Weinberg Law and its assumptions b) Genetic Variations in Populations i) Measuring Genetic Variation at Protein & DNA level ii) Natural Selection, Genetic Drift and Speciation iii) Role of Population Genetics in Conservation Biology 	
CA (Continuous Assessment)	CA1- Written test CA 2- Problems	
References:	 Russell P. J. (1998). Genetics. 5th Edition. Benjamin/Cummings Publishing Company Inc. Russell P. J. (2016). Essential iGenetics. 3rd Edition. Pearson Education. Maloy S. R., Cronan J. E., and Freifelder D. (2006). Microbial Genetics. 2nd Edition. Narosa Publishing House. 	
	Jind H	

Will!

SBT203	Enzymology, Vitamins and Immunology	2 Credits
Learning Objectives	 To acquaint students with concepts in Enzymology such a enzyme, active sites, enzyme action, regulation and inhibi To enable the student to comprehend the different vitami coenzymes To provide a basic understanding of antibodies, antigens immune system 	tion ns and
Course description	At the end of this course, the student would be able to understan and action of enzymes, their significance and role of vitamins an Students would also develop understanding of the concept of an antibodies and immunity.	d coenzymes.
	THEORY	(45 lectures)
Sub Unit	Unit – I: Basic Enzymology	15 lectures
1.	 a) Enzymes i) History ii) Definition, Classification, Nomenclature iii) Chemical Nature, Properties of Enzymes b) Mechanism of Enzyme Action i) Concept of activation energy and transition state ii) Active Sites, Enzyme Specificity iii) Cofactors and coenzymes iv) Concept of optimum conditions- Effect of pH, Temperature, enzyme concentration and Substrate Concentration on Enzyme Activity c) Concept of Enzyme inhibition and activation i.) Feed back inhibition, Product inhibition, ii.) Allosteric enzymes e) Significance of Enzymes in industry 	
	Unit – II: Vitamins and coenzymes	15 lectures
	 a) Introduction and Definition History and discovery Classification based on solubility b) Fat soluble vitamins (Structure, Sources, RDA, biochemical functions, related disorders) Vitamin A Vitamin D Vitamin E 	

	 iv) Vitamin K c) Water soluble vitamins (Sources, RDA, biochemical functions, related disorders) i) B complex group vitamins- B₁, B₂, B₃, B₆, B₇, B₁₂, and Folic acid ii) Vitamin C (include structure) 	
_	Unit – III: Basic Immunology	15 lectures
1.	 a) History b) Immunity –First, second and third line of defense c) Factors Influencing Immunity and Mechanisms of each type i.) Innate Immunity, ii.) Acquired Immunity, iii.) Local and Herd Immunity iv.) Humoral and Cellular Immunity d) Antigens Types of Antigens General Properties of Antigens Adjuvants and epitopes e) Antibodies Discovery of Antibodies Structure of Antibodies Classes and sub classes of Immunoglobulins with their biological activities iv.) Antigenic Determinants on Immunoglobulins 	
СА	CA1- Written test	
(Continuous Assessment)	CA 2- Case studies, Presentations	
References:	 Nelson D. L., and Cox M. M. (2008). Lehninger Principles of Biochemistry. 5th Edition. W H Freeman and Company. Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd Rao C. V. (2007). Immunology. 2nd Edition. Narosa Publishing House Pvt. Ltd. Ananthanarayan R. and Panikar C. K. J. (2009). Textbook of Microbiology. 8Th Edition. Universities Press. Kindt T. J., Goldsby R. A., and Osborne B. A. (2007). Kuby Immunology. 6th Edition. W.H. Freeman And Company. 	

SBT204	Tissue Culture and Biostatistics	2 Credits
Learning Objectives	 To aquaint students with the basic concepts in Plant and Culture To impart the basic skills of PTC and ATC To introduce the usefulness of Statistics in Biological data understand the types of data, representation of data and central tendency and dispersion. 	ı analysis. To
Course description	At the end of this course, the importance and implementation of Animal Tissue Culture techniques would be established. The key noted when practically carrying out these techniques will be und the need for Biostatistics and basic application of Biostatistics we emphasized. THEORY	y points to be lerstood. Also,
Sub Unit	Unit – I: Plant Tissue Culture	15 lectures
1.	 a) Introduction Landmark contributions in PTC Cell Theory, Concept of Cell Culture, Cellular Totipotency b) Organization of Plant Tissue Culture Laboratory Equipments and Instruments Aseptic Techniques: Washing of Glassware, Media Sterilization Aseptic Workstation, Precautions to maintain Aseptic Conditions. c) Culture Medium Nutritional requirements of the explants, PGR's and their in-vitro roles Media Preparation d) Callus Culture Technique Introduction, Principle & Protocols 	
	Unit – II: Animal Cell Culture	15 lectures
1.	 a) Basics of Animal Cell Culture i) Introduction ii) Advantages and limitations iii) Types of cell culture iv) Applications of cell culture b) Cell Culture Techniques i) Laboratory design and layout 	

	 ii) Equipment and Sterilization Methodology iii) Aseptic technique iv) Culture vessels and substrates v) Nutritional and Physiological: Growth Factors & Growth Parameters c) Safety, Bioethics and Validation 	
	Unit – III: Biostatistics	15 lectures
	 a) Introduction Definition & Importance of Statistics in Biology Types of Data Types of Population Sampling b) Normal and Frequency Distribution Representation of Data and Graphs Bar Diagrams, Pie Charts and Histogram, Polygon and Curve c) Measures of Central Tendency (For Raw, Ungrouped & Grouped Data) Mean, Median, Mode Measures of Dispersion Range, Variance, Coefficient of Variance Standard Deviation, Standard Error 	1
CA	CA1- Written test	
(Continuous Assessment)	CA 2- Quiz	
References:	 Razdan M.K.(2014).An Introduction to Plant Tissue Culture. 2nd Edition. Mudrak Printer. De K. K. (2013). Plant Tissue Culture. New Central Book agency (P) Ltd. Jha T. B. and Ghosh B. (2005). Plant Tissue Culture. Basic and Applied. Universities Press India Ltd. Doods J. H and Roberts L. N. (2004). Experiments in Plant Tissue Culture. 3rd Edition. Published by Press syndicate of the University of Cambridge. Freshney I. R. (2010). Culture of Animal Cells. 6th Edition. Wiley-Blackwell. Gangal S. (2010). Principles and Practice of Animal Tissue Culture. 2nd Edition. Universities Press (India) Pvt. Ltd. Mahajan B. K. (2016). Methods in Biostatistics for Medical Students and Research Workers. Jaypee Brothers Medical Publishers (P) Ltd. Gurumani N. (2009). An Introduction to Biostatistics. 2nd Revised Edition. MJP Publishers. Arora P. N. and Malhan P. K. (2013). Biostatistics. 2nd Edition. Himalaya Publishing House. 	

SBT205	Macromolecular Chemistry	2 Credits
Learning Objectives	 To familiarize students with Bioorganic Molecules To provide a clear understanding of Classification, Struct Characterization of Biomolecules To impart knowledge related to biological role of all major 	
Course description	The Bioorganic Chemistry course is designed to impart basic kn to different classes of organic Biomolecules. These vital bioorganic compounds play indispensable functions i Hence a comprehensive understanding of basics of Biomolecules students for a future career in industry, research and entreprene THEORY	owledge related in the cell. , will prepare
Sub Unit	Unit – I: Biomolecules: Carbohydrates	15 lectures
1.	 a) Structure, Function, Classification b) Characteristic Reactions, Physical and Chemical Properties c) D & L Glyceraldehydes d) Structure of Monosaccharides, Disaccharides, and Polysaccharides e) Isomers of Monosaccharides f) Chemical/Physical Properties of Carbohydrate g) Chemical Reactions for Detection of Mono, Di and Polysaccharides. 	
Sub Unit	 Unit – II: Biomolecules: Lipids a) Classification of Lipids b) Properties of Saturated, Unsaturated Fatty Acids, Rancidity, and Hydrogenation of Oils c) Triacylglycerol-Structure and Function d) Phospholipids: Lecithin Cephalin, Plasmalogen e) Sterols: Cholesterol: Structure and Function f) Lipoproteins: Structure and Function g) Storage Lipids, Structural Lipids h) Action of Phospholipases 	15 lectures

	Unit – III: Biomolecules: Amino acids and Proteins	
	 a) Amino Acids Definition, general formula and Peptide synthesis Classification of amino acids based on polarity of R group and Nutritional classification Properties Isoelectric point, concept of isoelectric pH and Zwitter ion Titration curve of amino acids (with example) b) Proteins Classification based on Structure and Functions, Primary Structure N-terminal (Sanger and Edmans Method) and C-terminal Analysis (Enzyme) Reactions of Amino Acids, Sorenson's Titration, Ninhydrin Test Denaturation of protein, Structure of Peptides. Glycoproteins 	15 lectures
CA (Continuous	CA1- Written test CA 2- Quiz	
Assessment)	1 1 11 //	
References:	 Nelson D. L., and Cox M. M. (2008). Lehninger Principles of Biochemistry. 5th Edition. W H Freeman and Company. Murray R. (2017). Harper's Illustrated Biochemistry, 27Th Edition, Lange Publication. Voet D., and Voet J. (2008). Biochemistry. John Willey and Sons, Inc. USA. Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd. Berg J and Stryer L. (2012). Biochemistry. 7Th Edition. W.H. Freeman and company, NY. Conn E. E. and Stumpf P. K. (1987). Outlines of Biochemistry. 4th Edition. Willey Eastern Limited. 	

SBT206	Physical and Analytical Chemistry	2 Credits
Learning Objectives	 To provide an understanding of chemical kinetics main reaction rates, effect of variables and mechanism of reactions To acquaint students with fundamentals in Oxidation Reactions To train the student in the principal, working and applie Analytical Techniques like Chromatography and Colorimetry 	and Reduction
Course description	This course is designed to enable the student understand kine types of chemical reactions, and to distinguish reactions involving reduction processes. The student would also be introduced to the and use of two common and significant analytical te Chromatography and Colorimetry.	g oxidation and understanding
	THEORY	(45 lectures)
Sub Unit	Unit I: Chemical Kinetics	15 lectures
1.	 a) Reaction Kinetics i) Rate of Reaction, ii) Rate Constant, iii) Measurement of Reaction Rates iv) Order & Molecularity of Reaction 	
2.	Integrated Rate Equation of First and Second order reactions (with equal initial concentration of reactants). (Numericals expected)	
3.	 a) Determination of Order of Reaction by i) Integration Method ii) Graphical Method iii) Ostwald's Isolation Method iv) Half Time Method (Numericals expected) 	
Sub Unit	Unit II: Oxidation and Reduction reactions	15 lectures
1.	 a) Principals of Oxidation & Reduction Reactions i) Oxidising agents ii) Reducing Agents 	
2.	 a) Oxidation Number i) Rules to assign Oxidation Numbers with examples ii) Ions like Oxalate, Permanganate, and Dichromate 	

3.	Balancing Redox Reactions by Ion Electron Method	
4.	Oxidation, Reduction, Addition and Substitution & Elimination Reactions	
Sub Unit	Unit – III: Basics of Analytical Chemistry	15 lectures
1.	Methods of Separationa) Precipitationb) Filtrationc) Solvent Extraction	
2.	 Analytical Techniques: Chromatography a) Definition, Principles, and types b) Introduction to paper, Thin layer and column chromatography c) Applications 	
3.	 Colorimetry a) Principle; Beer-Lambert's Law and limitations of Beer Lambert's Law b) Measurement of extinction c) Derivation of E = kcl d) Filter selection e) Applications 	
CA (Continuous Assessment)	CA1 - Written test CA 2 - Problems, Balancing chemical equations.	
References:	 Unit 1 & 2 Lee, J.D. Concise Inorganic Chemistry, (1991), ELBS. Douglas, B.E. and McDaniel, D.H., (1970), Concepts & Models of Inorganic Chemistry Prakash,S., Tuli, G.D., Basu, S.K., Madan, R.D., Advanced Inorganic Chemistry, Volume I Day, M.C. and Selbin, J., (1962), Theoretical Inorganic Chemistry, ACS Publications James E. Huheey, Inorganic Chemistry, (1983), Harper & Row Publishers, Asia Shriver, D.F., P.W. Atkins, C. H. Langford, 3rd edition, Inorganic Chemistry, Oxford University Press Bahl, Tuli and Anand, Advanced Inorganic Chemistry, Volume I and II. Manas Chanda, Atomic structure and chemical bond: Including Molecular spectroscopy, (1972), McGraw-Hill Inc, US 	

Unit 3:	
 Wilson K., and Walker J. (2010). Principles and Techniques of Biochemistry and Molecular Biology. 7th Edition. Cambridge University Press. 	
 Plummer D. T. (1988). An Introduction to Practical Biochemistry. 3rd Edition. Tata McGraw-Hill Publishing Company Ltd. 	

SBTP201	Cell biology and Plant Physiology Molecular Biology and Genetics		
	(Credits : 02; Practicals/Week: 02)		
	 Study of photomicrographs of cell organelles of plants and animals Study of Hill's Reaction Colorimetric study of shormtion another of photosymthetic nigments 		
	 Colorimetric study of absorption spectrum of photosynthetic pigments Activity of salivary amylase on starch Special staining - Cell wall using Chance's method 		
	 Special staining- Capsule staining using Manewal's method Special staining- Lipid staining using Burdon's method 		
	 Special staining- Endospore staining using Schaffer and Fulton's method Special staining- Metachromatic granules staining using Albert's method Special staining- Acid fast staining using Ziehl-Neelsen's method 		
	 Isolation of bacteria- quadrant plate method Enumeration of bacteria – Spread plate method and pour plate method Motility test: stab culture technique/ hanging drop method 		
	 14. Extraction of gDNA from moong seeds 15. Study of mitosis using PDB/ Colchicine treated onion root tips 16. Study of meiosis 		
	17. 17. Study of giant chromosome of <i>Drosophila</i>		
SBTP202	Enzymology, Vitamins and Coenzymes and Immunology		
	Tissue culture and Biostatistics		
	(Credits : 02 Practicals/Week: 02)		
	1. Qualitative assay of enzymes Amylase, Lipase, Protease, Urease, Catalase and Dehydrogenase.		
	2. Study of the effect of pH on enzyme activity		
	 Study of the effect of temperature on enzyme activity Study of blood grouping 		
	 Study of blood grouping Laboratory organization and layout of Plant and Animal Tissue Culture Laboratory 		
	6. Working and use of various instruments used in Tissue Culture/Biotechnology laboratory.		
	 Preparation of stock solutions and preparation of Media for PTC Aseptic transfer technique, Surface sterilization and Inoculation for Callus culture. 		
	o. Asoptie transfer termique, surface stermization and moeuration for Callus culture.		

Semester 2 Practical

SBTP203	Bioorganic Chemistry, Physical and Analytical chemistry		
	Bioorganic Chemistry, Physical and Analytical chemistry (Credits : 02; Practicals/Week: 02)		
	Carrier Street		
	 Spot test for carbohydrates, fats, proteins and amino acids and nucleic acids. Standardization of Colorimeter – Determination of λ Max for KMnO4 / CuSO4. Verification of Beer and Lambert's law. Estimation of sugars by DNSA method. Estimation of proteins by Lowry's method. Determination of rate constant for the saponification reaction between ethyl acetate and sodium hydroxide by back titration method. Study the reaction between NaHSO3 and KMnO4 and balancing the reaction in alkaline, acidic and neutral medium. Study the transfer of electrons (Titrate sodium thiosulphate and potassium dichromate). Determination of acetic acid in vinegar by titrimetric method. Standardized potassium permanganate solution. Determination of commercial sample of Sodium hydroxide using Potassium Hydrogen Phthalate. Determination of Fe(II) present in the given sample. Titrimetrically. Determination of amount of NAHCO3+ Na2CO3 in the given solid mixture Titrimetrically. Separation of sugars by paper chromatography. 		