UNIVERSITY OF MUMBAI

Syllabus for F.Y.B.Sc.

(Restructured)

Programme : B.Sc.

Course: Biotechnology

with effect from the academic year

2016 – 2017
Preamble:

Twenty First Century is known as the ‘Century of Biotechnology’. Biotechnology is one of the youngest branches of Life Science, which has expanded and established as an advanced interdisciplinary applied science in last few years. Biotechnology at the core envisages the comprehensive study of Life and the Interdisciplinary potential of Biotechnology has led to a unique status for Biotechnology in Research and Industry.

The socio-economic potential of Biotechnology is well established which has almost become synonymous with modern development. Biotechnology has its applications in almost every field touching practically every human activity. The applied aspect of Biotechnology is now getting established with its applications in Industry, Agriculture, Health and Environment, Biotechnology is the lead science expanding exponentially.

Biotechnology demands a trained, skilled human resource to establish the Industry and Research sectors. The field is novel and still expanding which demands inputs in Infrastructure and Technology. The global and local focus is on developing new technological applications is fast growing. Biotechnology sector in Research and Industry is expanding which is set to augur the next major revolution in the world.

The demand for trained workforce in Biotechnology is ever growing in Fundamental Research and Industry Sector. Academic and Research Sectors also require interdisciplinary trained manpower to further the Biotechnology Revolution.

The need of the hour is to design appropriate syllabi which keeps pace with changing times and technology with emphasizes on applications while elucidating technology in depth. The present Syllabi is Restructured anticipating the future needs of Biotechnology Sector with more emphasis on imparting hands-on skills. The main thrust is laid on making syllabus compatible with developments in Education, Research and Industrial sectors. The Theory and Practical course in new restructured course will lead to impart skill-set essentials to further Biotechnology Sector.

The restructured syllabus combines basic principals of Physical, Chemical and Biological sciences in light of advancements in technology. The curriculum aims to impart basic knowledge with emphasis on its applications to make the students industry ready.
Semester – I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Type</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lectures/Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT101</td>
<td>Core Subject</td>
<td>Basic Chemistry-I</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT102</td>
<td>Core Subject</td>
<td>Basic Chemistry-II</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT103</td>
<td>Core Subject</td>
<td>Basic Life Sciences-I : Biodiversity and Cell Biology</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT104</td>
<td>Core Subject</td>
<td>Basic Life Sciences-II : Microbial Techniques</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT105</td>
<td>Core Subject</td>
<td>Basic Biotechnology-I : Introduction to Biotechnology</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT106</td>
<td>Core Subject</td>
<td>Basic Biotechnology-II : Molecular Biology</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT107</td>
<td>Ability Enhancement Course 1 (FC I)</td>
<td>Societal Awareness</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBTP101, USBTP102, USBTP103</td>
<td>Core Subject Pricals</td>
<td>Practicals of USBT101, USBT102, USBT103, USBT104, USBT105 and USBT106</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester – II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Type</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lectures/Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT201</td>
<td>Core Subject</td>
<td>Chemistry-I : Bioorganic Chemistry</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT202</td>
<td>Core Subject</td>
<td>Chemistry-II : Physical Chemistry</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT203</td>
<td>Core Subject</td>
<td>Life Sciences-I : Physiology and Ecology</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT204</td>
<td>Core Subject</td>
<td>Life Sciences-II : Genetics</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT205</td>
<td>Core Subject</td>
<td>Biotechnology-I : Tissue Culture & Scientific Writing and Communication Skills</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT206</td>
<td>Core Subject</td>
<td>Biotechnology-II : Enzymology, Immunology and Biostatistics</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBT207</td>
<td>Ability Enhancement Course 2 (FC II)</td>
<td>Globalization, Ecology and Sustainable Development</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>USBTP201, USBTP202, USBTP203</td>
<td>Core Subject Pricals</td>
<td>Practicals of USBT201, USBT202, USBT203, USBT204, USBT205 and USBT206</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>
SEMESTER I

Basic Chemistry-I

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 101</td>
<td>Basic Chemistry I</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objective: To acquaint the students with basic concepts of Chemistry like Classification and Nomenclature of Chemical compounds

Learning Outcome: To impart hands-on skills in preparation of Buffers and Solutions

Unit I

Nomenclature and Classification

Nomenclature and Classification of Inorganic Compounds: Oxides, Salts, Acids, Bases, Ionic, Molecular and Coordination Compounds

15 Lectures 30 hrs

Unit II

Chemical Bonds

Ionic Bond: Nature of Ionic Bond, Structure of NaCl, KCl and CsCl, factors influencing the formation of Ionic Bond.

Covalent Bond: Nature of Covalent Bond, Structure of CH4, NH3, H2O, Shapes of BeCl2, BF3

Coordinate Bond: Nature of Coordinate Bond

Non-Covalent Bonds: Van Der Waal’s forces: dipole - dipole, dipole – induced dipole.

Hydrogen Bond: Theory of Hydrogen Bonding and Types of Hydrogen Bonding (with examples of RCOOH, ROH, Salicylaldehyde, Amides and Polyamides).

15 Lectures 30 hrs

Unit III

Water and Buffers

Chemistry of Water: Properties of Water, Interaction of Water with Solutes (Polar, Non-Polar, Charged), Non-Polar Compounds in Water – Change in its Structure and the Hydrophobic Effect, Role of Water in Biomolecular Structure and Function and Water as a Medium for Life

15 Lectures 30 hrs
Solutions: Normality, Molarity, Molality, Mole fraction, Mole concept, Solubility, Weight ratio, Volume ratio, Weight to Volume ratio, ppb, ppm, millimoles, milliequivalents (Numericals expected).

Primary and Secondary Standards: Preparation of Standard Solutions, Principle of Volumetric Analysis.

Acids and Bases: Lowry-Bronsted and Lewis Concepts. Strong and Weak Acids and Bases - Ionic Product of Water - pH, pK_a, pK_b. Hydrolysis of Salts.

Buffer solutions – Concept of Buffers, Types of Buffers, Derivation of Henderson equation for Acidic and Basic buffers, Buffer action, Buffer capacity (Numericals expected.) pH of Buffer Solution.

SEQUENTIA I

Basic Chemistry-II

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 102</td>
<td>Basic Chemistry II</td>
<td>2</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

Course Objective: To acquaint students with Concepts of Stereochemistry

Learning Outcome: To impart knowledge of Titrimetric and Volumetric Estimations and handling of basic Analytical Techniques like Chromatography and Colorimetry

Unit I: Stereochemistry

Isomerism – Types of Isomerism: Constitutional Isomerism (Chain, Position and Functional) and Stereoisomerism, Chirality.

Geometric Isomerism and Optical Isomerism: Enantiomers, Diastereomers, and Racemic mixtures Cis-Trans, Threo, Erythro and Meso isomers, Diastereomerism (Cis-Trans Isomerism) in Alkenes and Cycloalkanes (3 and 4 membered ring)

Conformation: Conformations of Ethane. Difference between Configuration and Conformation.

Configuration: Asymmetric Carbon Atom, Stereogenic/ Chiral Centers, Chirality,
| Representation of Configuration by “Flying Wedge Formula”
Projection formulae – Fischer, Newman and Sawhorse. The Interconversion of the Formulae. |

| **Unit II**
Titrimetry and Gravimetry
Titrimetric Analysis: Titration, Titrant, Titrand, End Point, Equivalence Point, Titation Error, Indicator, Primary and Secondary Standards, Characteristics and examples
Types of Titration – Acid – Base, Redox. Precipitation, Complexometric Titration. Acid – Base Titration.- Strong Acid Vs Strong Base - Theoretical aspects of Titration Curve and End Point Evaluation. Theory of Acid – Base Indicators, Choice and Suitability of Indicators.
Gravimetric Analysis: Solubility and Precipitation, Factors affecting Solubility, Nucleation, Particle Size, Crystal Growth, Colloidal State, Ageing/Digestion of Precipitate. Co-Precipitation and Post-Precipitation. Washing, Drying and Ignition of Precipitate. (Numericals Expected). |

| **Unit III**
Analytical Techniques
Methods of Separation
Precipitation, Filtration, Distillation and Solvent Extraction.
Analytical Techniques
Chromatography:
Definition, Principles, Types
Introduction to Paper Chromatography, Thin Layer Chromatography, Column Chromatography and its Applications.
Colorimetry:
Principle, Beer-Lambert’s Law, Measurement of Extinction, Derivation of \(E = kcl \), Limitations of Beer-Lambert’s Law, Filter Selection |

| 15 Lectures | 30 hrs |
SEMESTER I

Basic Life Sciences-I : Biodiversity and Cell Biology

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 103</td>
<td>Biodiversity and Cell Biology</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with concept of Biodiversity and Cell Biology

Learning Outcome: To impart skill in handling and culture of Microorganisms

Unit I
Origin of Life and Biodiversity
(Animal, Plant, Microorganisms)

- Origin of Life, Chemical and Biological Evolution, Origin of Eukaryotic Cell.
- Concept of Biodiversity, Taxonomical, Ecological and Genetic Diversity & its Significance
- **Introduction to Plant Diversity:** Algae, Fungi, Bryophyta, Pteridophyta, Gymnosperms and Angiosperms (with one example each)
- **Introduction to Animal Diversity:** Non-Chordates and Chordates (with at least one representative example.)
- **Introduction to Microbial Diversity**
Archaebacteria, Eubacteria, Blue-green Algae, Actinomycetes, Eumycota- Habitats, Examples and Applications.

<table>
<thead>
<tr>
<th>Lectures</th>
<th>15Lectures</th>
<th>30 hrs</th>
</tr>
</thead>
</table>

Unit II
Ultra Structure of Prokaryotic and Eukaryotic Cell.

- **Ultrastructure of Prokaryotic Cell:** Concept of Cell Shape and Size. Detail Structure of Slime Layer, Capsule, Flagella, Pilli, Cell Wall (Gram Positive and Negative), Cell Membrane, Cytoplasm and Genetic Material Storage Bodies and Spores
- **Ultrastructure of Eukaryotic Cell:** Plasma membrane, Cytoplasmic Matrix, Microfilaments, Intermediate Filaments, and Microtubules
- Organelles of the Biosynthetic-Endoplasmic Reticulum & Golgi Apparatus. Lysosome, Endocytosis, Phagocytosis, Autophagy, Proteasome
- Eucaryotic Ribosomes, Mitochondria and Chloroplasts

<table>
<thead>
<tr>
<th>Lectures</th>
<th>15Lectures</th>
<th>30 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE</td>
<td>TITLE</td>
<td>CREDITS</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>USBT 104</td>
<td>Microbial Techniques</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with basic techniques in Staining and Sterilization

Learning Outcome: To impart the knowledge of growth of microorganisms

Unit I
Microscopy and Stains
- **Microscope- Simple and Compound**: Principle, Parts, Functions and Applications.
- **Dark Field and Phase Contrast Microscope**

15 lectures 30 hrs

Unit II
Sterilization Techniques
- **Definition**: Sterilization and Disinfection.
- **Types and Applications**
- **Dry Heat, Steam under pressure**

15 lectures 30 hrs
Unit III

Nutrition, Cultivation and Enumeration of Microorganisms

Nutrition and Cultivation of Microorganisms
- Classification of Different Nutritional Types of Organisms.
- Design and Types of Culture Media.
- Simple Medium, Differential, Selective and Enriched Media
- Concept of Isolation and Methods of Isolation. Pure Culture Techniques

Growth and Enumeration
- Growth Phases, Growth Curve.
- Arithmatic Growth and Growth Yield.
- Measurement of Growth. Chemostat and Turbidostat
- Enumeration of Microorganisms- Direct and Indirect Methods
- Preservation of Cultures- Principle and Methods. Cryogenic Preservation
- Advantages and Limitations

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Scope and Introduction to Biotechnology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Objectives:</td>
<td>To acquaint students with various fields of Biotechnology and their applications</td>
</tr>
<tr>
<td>Learning Outcome:</td>
<td>To impart the knowledge of Food Technology and Fermentation Techniques</td>
</tr>
</tbody>
</table>

SEMESTER I

Basic Biotechnology-I: Introduction to Biotechnology

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 105</td>
<td>Introduction to Biotechnology</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

| Course Objectives: | To acquaint students with various fields of Biotechnology and their applications |
| Learning Outcome: | To impart the knowledge of Food Technology and Fermentation Techniques |

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Scope and Introduction to Biotechnology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Objectives:</td>
<td>To acquaint students with various fields of Biotechnology and their applications</td>
</tr>
<tr>
<td>Learning Outcome:</td>
<td>To impart the knowledge of Food Technology and Fermentation Techniques</td>
</tr>
</tbody>
</table>

<p>| Course Objectives: | To acquaint students with various fields of Biotechnology and their applications |
| Learning Outcome: | To impart the knowledge of Food Technology and Fermentation Techniques |</p>
<table>
<thead>
<tr>
<th>Topics</th>
<th>Lectures</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of Biotechnology in Agriculture: GM Food, GM Papaya, GM Tomato, Fungal and Insect Resistant Plants BT Crops, BT Cotton and BT Brinjal Pros and Cons Biotechnological applications in Crop and Livestock Improvements Modifications in Plant Quality Golden Rice, Molecular Pharming, Plant Based Vaccines Ethics in Biotechnology and IPR</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Food Biotechnology Biotechnological applications in enhancement of Food Quality Unit Operation in Food Processing Quality Factors in Preprocessed Food Food Deterioration and its Control Rheology of Food Products Microbial role in food products Yeast, Bacterial and other Microorganisms based process and products Modern Biotechnological Regulatory Aspects in Food Industries Biotechnology and Food - Social Appraisal Fermentation Technology Defination, Applications of Fermentation Technology Microbial Fermentations Overview of Industrial Production of Chemicals (Acetic Acid, Citric Acid and Ethanol), Antibiotics, Enzymes and Beverages</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>
SEMESTER - I

Basic Biotechnology-II : Molecular Biology

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 106</td>
<td>Molecular Biology</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with DNA Replication, Repair and Genetic Engineering

Learning Outcome: Impart the knowledge of molecular Biology Techniques

Unit I
Replication
- DNA Replication in Prokaryotes and Eukaryotes
- Semi-conservative DNA replication, DNA Polymerases and its role,
- E.coli Chromosome Replication,
- Bidirectional Replication of Circular DNA molecules,
- Rolling Circle Replication, DNA Replication in Eukaryotes
- DNA Recombination – Holliday Model for Recombination Transformation

15 lectures 30 hrs

Unit II
Mutation and DNA Repair
- Definition and Types of Mutations,
- Mutagenesis and Mutagens. (Examples of Physical, Chemical and Biological Mutagens)
- Types of Point Mutations,
- DNA REPAIR
- Photoreversal, Base Excision Repair, Nucleotide Excision Repair, Mismatch Repair, SOS Repair and Recombination Repair.

15 lectures 30 hrs

Unit III
Genetic Engineering
- Experimental evidences for DNA and RNA as Genetic Material.
- Genetic Engineering in Ecoli and other Prokaryotes, Yeast, Fungi and Mammalian Cells
- Cloning Vectors-Plasmids (pBR 322, pUC)
- Vectors for Plant and Animal Cells, Shuttle Vectors, YAC Vectors, Expression Vectors
- Enzymes- DNA Polymerases, Restriction Endonucleases, Ligases, Reverse Transcriptases, Nucleases, Terminal Transferases, Phosphatases
- Isolation and Purification of DNA (Genomic, Plasmid) and RNA,
- Identification of Recombinant Clones

15 lectures 30 hrs
Semester – I
Practicals
SEMESTER – I
Practicals
Basic Chemistry

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBTP 101</td>
<td>Basic Chemistry</td>
<td>2</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

1. Safety Measures and Practices in Chemistry Laboratory, Working and use of a Digital Balance, Functioning and Standardization of \(p\text{H} \) Meter, Optical Activity of a Chemical Compounds by Polarimeter
2. Preparation of Standard (Molar, Molal and Normal solutions) and Buffer Solutions Determination of strength of HCl in commercial sample
3. Qualitative Analysis of Inorganic Compounds - Three experiments
5. To Standardize commercial sample of NaOH using KHP (Potassium hydrogen pthalate) and sample of HCl using borax.
6. Dissociation Constant of Weak Acids by Incomplete Titration Method using \(p\text{H} \) Meter and determination of Acetic acid in Vinegar by Titrimetric Method
7. Determination of the amount of Fe (II) present in the given solution Titrimetrically
8. Determination of amount of NaHCO3 + Na2CO3 in the given solid mixture Titrimetrically
9. Determination of the amount of Mg (II) present in the given solution complexometrically
10. Determination of percent composition of BaSO4 and NH4Cl in the given mixture Gravimetrically
11. Separation of Cu, Ni and Fe using Paper Chromatography and amino acids - paper chromatography
12. Determination of fluoride ion using Colorimetry and Fe (III) by using Salicylic Acid by Colorimetric Titration

SEMESTER – I
Practicals
Basic Life Sciences

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBTP 102</td>
<td>Basic Life Science</td>
<td>2</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

1. Components and working of Simple, Compound, Dark Field, Fluorescent and Phase Contrast Microscope
2. Staining of Plant and Animal Tissues using Single and Double Staining Techniques
3. Special Staining Technique for Cell Wall, Capsule and Endospores and Fungal Staining
4. Monochrome Staining, Differential Staining, Gram Staining, and Acid Fast Staining and Ronomowsky Staining
5. Study of Plant, Animal and Microbial Groups with at least one examples from each x 3
6. Study of Photomicrographs of Cell Organelles
7. Sterilization of Laboratory Glassware and Media using Autoclave
8. Preparation of Media- Nutrient broth and Agar, MacConkey Agar, Sabourauds Agar
9. Isolation of Organisms : T-streak, Polygon method
10. Enumeration of microorganisms by Serial Dilution, Pour Plate, Spread Plate Method
11. Colony Characteristics of Microorganisms, Enumeration by Breed’s count
12. Growth Curve of E.Coli
SEMESTER – I
Practicals
Basic Biotechnology

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBTP 103</td>
<td>Basic Biotechnology</td>
<td>2</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

1. Assignment- Study of any branch of biotechnology and its applications
2. Microbial examination of food and detection of Pathogenic Bacteria from Food Samples
3. Isolation of organisms causing Food Spoilage
4. Microscopic determination of Microbial flora from Yoghurt and Lactic Acid Determination
5. Analysis of Milk- Methylene Blue, Resazurin Test, Phosphatase Test
6. Extraction of Caesin from Milk
7. Meat Tenderization using Papain
8. Fermentative production of Alcohol
9. Determination of Alcohol content
10. Isolation and purification of DNA (genomic, plasmid)
11. Restriction Digestion
12. Agarose Gel Electrophoresis of the genomic and plasmid DNA
SEMESTER – II

THEORY
SEMESTER II

Chemistry-I : Bioorganic Chemistry

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 201</td>
<td>Bioorganic Chemistry</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with Bioorganic Molecules

Learning Outcome: To impart the knowledge of Classification, Structure and Characterization of Biomolecules

Unit I

Biomolecules: Carbohydrates and Lipids

- **Carbohydrates**: Structure, Function, Classification, Characteristic Reactions, Physical and Chemical Properties, D & L Glyceraldehydes, structure of Monosaccharide, Disaccharides, and Polysaccharides. Isomers of Monosaccharides, Chemical/Physical Properties of Carbohydrate, Chemical Reactions for Detection of Mono., Di and Polysaccharides,

Unit II

Biomolecules: Proteins and Amino Acids

Unit III

Nucleic Acids: Structure, Function of Nucleic Acids, Properties and Types of
Biomolecules: Nucleic Acids
DNA, RNA. Structure of Purine and Pyrimidine Bases Hydrogen Bonding between Nitrogenous Bases in DNA Differences between DNA and RNA, Structure of Nucleosides, Nucleotides and Polynucleotides.

SEMESTER II
Chemistry-II : Physical Chemistry

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 202</td>
<td>Physical Chemistry</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with concepts in Thermodynamics, Kinetics and Redox Reactions

Learning Outcome: To impart skills in Kinetics and Chemical Reactions

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Thermodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 lectures</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit II</th>
<th>Chemical Kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reaction Kinetics: Rate of Reaction, Rate Constant, Measurement of Reaction Rates Order & Molecularity of Reaction, Integrated Rate Equation of First and Second order reactions (with equal initial concentration of reactants). (Numericals expected) Determination of Order of Reaction by a) Integration Method b) Graphical Method c) Ostwald’s Isolation Method d) Half Time Method. (Numericals expected).</td>
</tr>
<tr>
<td>15 lectures</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit III</th>
<th>Oxidation Reduction reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Principals of Oxidation & Reduction Reactions– Oxidising and Reducing Agents, Oxidation Number, Rules to assign Oxidation Numbers with examples Ions like</td>
</tr>
<tr>
<td>15 lectures</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>
Oxalate, Permanganate and Dichromat

eB. Balancing Redox Reactions by Ion
Electron Method
Oxidation, Reduction, Addition and
Substitution & Elimination Reactions.

<table>
<thead>
<tr>
<th>SEMESTER II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Sciences-I : Physiology and Ecology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 203</td>
<td>Physiology and Ecology</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with Physiological Processes in Plants and Animals
Learning Objectives: To impart the knowledge of Physiology and Ecology

Unit I
Plant Physiology
- Plant hormones - Auxin, Gibbrellins, Cytokinins, Ethylene, Abscissic acid
- Introduction to Secondary Metabolites

15 lectures 30 hrs

Unit II
Animal Physiology
- Physiology of Digestion
- Movement of Food and Absorption, Secretary functions of Alimentary Canal, Digestion and Absorption, assimilation in Gut of Mammals
- Anatomy of Mammalian Kidney, Structure of Nephron, Physiology of Urine Formation and Role of Kidney in Excretion and Osmoregulation
- Physiology of Respiration, Mechanism of Respiration
- Principles of Gaseous Exchange in the Blood and Body Fluids
- Blood and Circulation: Blood Composition, Structure and Function of its Constituents

15 lectures 30 hrs
Unit III

Ecosystem and Interactions

- Ecology and Biogeography.
- Ecosystems, Definition and Components,
 - Structure and Function of Ecosystems.
 - Aquatic and Terrestrial Ecosystems,
 - Biotic and Abiotic Factors, Trophic Levels, Food Chain and Food Web,
 - Ecological Pyramids (Energy, Biomass and Number)
- Interactions, Commensalism, Mutualism, Predation and Antibiosis, Parasitism.

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 204</td>
<td>Genetics</td>
<td>2</td>
<td>15 lectures</td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with concepts in Genetics

Learning Objectives: To impart skills in Techniques in Genetic Analysis and Population Genetics

SEMESTER – II

Life Sciences-II: Genetics

Unit I

Genetics Fundamentals

- Mendel’s Laws of Heredity
 - Monohybrid Cross: Principle of Dominance and Segregation.
 - Dihybrid Cross: Principle of Independent Assortment.
 - Application of Mendel’s Principles
 - Punnett Square.
- Mendel’s Principle in Human Genetics.
- Incomplete Dominance and Co-dominance.
- Multiple Alleles, Allelic series.
- Variations among the effect of the Mutation.
- Genotype and Phenotype.
- Environmental effect on the expression of the Human Genes.
- Gene Interaction.
- Epistasis.

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 204</td>
<td>Genetics</td>
<td>2</td>
<td>15 lectures</td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with concepts in Genetics

Learning Objectives: To impart skills in Techniques in Genetic Analysis and Population Genetics
Unit II
Microbial Genetics
- Genetic analysis in Bacteria - Prototrophs, Auxotrophs.
- Bacteriophages: Lytic and Lysogenic Development of Phage.
- Mechanism of Genetic Exchange in Bacteria: Conjugation; Transformation; Transduction; (Generalized Transduction, Specialized Transduction)
- Bacterial Transposable Elements.
- 15 lectures
- 30 hrs

Unit III
Population Genetics
- Genetic Structure of Populations – Genotypic Frequencies and Allelic Frequencies, Hardy-Weinberg Law and its assumptions
- Genetic Variations in Populations - Measuring Genetic Variation at Protein level and measuring Genetic Variations at DNA level
- Natural Selection.
- Genetic Drift
- Speciation
- Role of Population Genetics in Conservation Biology
- 15 lectures
- 30 hrs

SEMESTER II
Biotechnology-I : Tissue Culture & Scientific Writing and Communication Skills

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 205</td>
<td>Tissue Culture & Scientific Writing and Communication Skills</td>
<td>2</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with Techniques of Plant and Animal Tissue Culture

Learning Outcome: To impart the skills of PTC, ATC and Science Communication

Unit I
Plant Tissue Culture
- Cell Theory, Concept of Cell Culture, Cellular Totipotency, Organization of Plant Tissue Culture Laboratory:
- Equipments and Instruments
- Aseptic Techniques: Washing of Glassware, Media Sterilization, Aseptic Workstation, Precautions to maintain Aseptic Conditions.
- Culture Medium: Nutritional requirements of the explants, PGR’s and their in-vitro roles, Media Preparation Callus Culture Technique: Introduction, Principle and Protocols
- 15 lectures
- 30 hrs
<table>
<thead>
<tr>
<th>Unit II</th>
<th>Animal Tissue Culture</th>
<th>Basics of Animal Tissue Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>Cell Culture Techniques,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipment and Sterilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methodology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Animal Cell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cultures: Nutritional and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physiological: Growth Factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and Growth Parameters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Metabolism and Growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kinetics.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary Cell Cultures:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establishment and Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of Primary Cell Cultures of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adherent and Non-Adherent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell Lines with examples.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application of Cell Cultures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit III</td>
<td>Scientific Writing</td>
<td>Communication Skills</td>
</tr>
<tr>
<td></td>
<td>and Communication</td>
<td>Introduction to Communication</td>
</tr>
<tr>
<td></td>
<td>Skills</td>
<td>-- Elements, Definitions, Scope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of Communication and Communication as part of Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication Elements -- Verbal and Non-Verbal Communications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of Effective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication, Oral Presentations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific Reading, Writing &</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific Writing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process of Scientific Writing: Thinking, Planning, Rough Drafts and Revising Contents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Scientific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reports and Writings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compilation of Experimental Data, Communication Methods in Science, Examples of Scientific and Unscientific Writing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing Papers, Reviews,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bibliography Plagiarism--Introduction to Plagiarism, Examples of Plagiarism.</td>
</tr>
</tbody>
</table>

SEMESTER - II

Biotechnology-II : Enzymology, Immunology and Biostatistics

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 206</td>
<td>Enzymology, Immunology and Biostatics</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives: To acquaint students with concepts in Enzymology, Immunology and Biostatistics

Learning Outcome: To impart the skills in Enzyme Kinetics, Immunological Techniques and Biostatistics
<table>
<thead>
<tr>
<th>Unit I</th>
<th>Enzymes</th>
<th>Definition, Classification, Nomenclature, Chemical Nature, Properties of Enzymes, Mechanism of Enzyme Action, Active Sites, Enzyme Specificity, Effect of pH, Temperature, Substrate Concentration on Enzyme Activity, Enzyme Kinetics, Michaelis-Menten Equation, Types of Enzyme Inhibitions-Competitive, Uncompetitive, Non-Competitive Allosteric Modulators Co-Factors, Zymogens.</th>
<th>15 lectures</th>
<th>30 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit II</td>
<td>Immunology</td>
<td>Overview of Immune Systems, Cell and Organs involved, T and B cells. Innate Immunity, Acquired Immunity, Local and Herd Immunity, Humoral and Cellular Immunity - Factors Influencing and Mechanisms of each. Antigens and Antibodies: Types of Antigens, General Properties of Antigens, Haptens and Superantigens Discovery and Structure of Antibodies (Framework region) Classes of Immunoglobulins, Antigenic Determinants. Antigen-Antibody Interactions Monoclonal Antibodies, Vaccines (Live, Killed) and Toxoid. Problems with Traditional Vaccines, Impact of Biotechnology on Vaccine Development.</td>
<td>15 lectures</td>
<td>30 hrs</td>
</tr>
<tr>
<td>Unit III</td>
<td>Biostatistics</td>
<td>Definition & Importance of Statistics in Biology Types of Data, Normal and Frequency Distribution Representation of Data and Graphs (Bar Diagrams, Pie Charts and Histogram, Polygon and Curve) Types of Population Sampling Measures of Central Tendency (For Raw, Ungroup & Group Data) Mean Median Mode Measures of Dispersion Range, Variance, Coefficient of Variance. Standard Derivation. Standard Error.</td>
<td>15 lectures</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>
Semester – II

PRACTICALS
SEMESTER – II
Practicals
Chemistry

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBTP 201</td>
<td>Chemistry</td>
<td>2</td>
<td>30 hrs</td>
</tr>
<tr>
<td></td>
<td>1. Spot test for Carbohydrates, Fats and Proteins and Amino Acids and Nucleic Acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Standardization of Colorimeter and Estimation of Reducing sugar by DNSA method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Estimation of Protein by Biuret method and Lowry method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Saponification of Fats, Saponification Value of Oil or Fat, Iodine value of Oil and determine the rate constant for the saponification reaction between ethyl acetate and NaOH by back titration method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. To determine enthalpy of dissolution of salt like KNO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Determine the rate constant for hydrolysis of ester using HCl as a catalyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Study the kinetics of reaction between Thiosulphate ion and HCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Study reaction between potassium Persulphate and Potassium Iodide kinetically and hence to determine order of reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Study the reaction between NaHSO3 and KMnO4 and balancing the reaction in acidic, alkaline and neutral medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Study transfer of electrons (Titration of sodium thiosulphate with potassium dichromate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Determination of the volume strength of hydrogen peroxide solution by titration with standardised potassium permagnate solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Determination of amount of K oxalate and oxalic acid in the given solution Titrimetrically</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER – II
Practicals
Life Sciences

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBTP 202</td>
<td>Life Sciences</td>
<td>2</td>
<td>30 hrs</td>
</tr>
<tr>
<td></td>
<td>1. Study of Hill’s reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Colorimetric study of Absorption Spectrum of Photosynthetic Pigments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Movement of Food in Paramoecium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Activity of Salivary Amylase on Starch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Analysis of Urine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Study of Human Blood Groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Study of Mammalian Kidney and Heart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Problems in Mandelian Genetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Study of Mitosis and Meiosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Study of Karyotypes – Normal Male and Normal Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Study of Interactions Commensalism, Mutualism, Predation and Antibiosis, Parasitism.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEMESTER – II
Practicals
Biotechnology

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBTP 203</td>
<td>Biotechnology</td>
<td>2</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

1. Working and use of various Instruments used in Biotechnology Laboratory (Autoclave, Hot air Oven, Centrifuge, Incubator, Rotary Shaker, Filter Assembly, LAF, pH meter and Colorimeter)
2. Laboratory Organization and Layout for Plant and Animal Tissue Culture Laboratory
3. Preparation of Stock Solutions and Preparation of Media for PTC
4. Aseptic Transfer Technique, Surface Sterilization and Innoculation for Callus Culture
5. Media Preparation and Sterilization (ATC)
6. Trypsinization of Tissue and Viability Count
7. Qualitative Assay of Enzyme Amylase, Lipase, Protease, Urease, Catalase and Dehydrogenase
9. Study of Effect of Substrate Concentration on enzyme activity and determination of Vmax and Km
10. Study of antigen antibody interaction by Ouchterlony method
11. Biometric Analysis for Mean, Median, Mode and Standard Deviation and Data representation using frequency Polygon, Histogram and Pie Diagram
12. Preparation of review reports of 5 Scientific Papers and Presentation (last 5 years)
Semester – I and II

Ability Enhancement Course 1 (FC I)
Ability Enhancement Course 2 (FC II)
<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 107</td>
<td>Societal Awareness</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objective: To acquaint the students with concepts of Societal Awareness

Learning Outcome: To impart knowledge of Society and make students aware about the Problems in Society

Unit I

Overview of Indian Society
Understand the multi-cultural diversity of Indian society through its demographic composition: population distribution according to religion, caste, and gender; Appreciate the concept of linguistic diversity in relation to the Indian situation; Understand regional variations according to rural, urban and tribal characteristics; Understanding the concept of diversity as difference

15 Lectures 30 hrs

Unit II

Concept of Disparity - I
Understand the concept of disparity as arising out of stratification and inequality; Explore the disparities arising out of gender with special reference to violence against women, female foeticide (declining sex ratio), and portrayal of women in media; Appreciate the inequalities faced by people with disabilities and understand the issues of people with physical and mental disabilities

15 Lectures 30 hrs

Concept of Disparity - II
Examine inequalities manifested due to the caste system and inter-group conflicts arising thereof; Understand inter-group conflicts arising out of communalism; Examine the causes and effects of conflicts arising out of regionalism and linguistic differences

Unit III

The Indian Constitution and Significant Aspects of Political Processes
The Indian Constitution
Philosophy of the Constitution as set out in the Preamble; The structure of the Constitution-the Preamble, Main Body and Schedules; Fundamental Duties of the Indian Citizen; tolerance, peace and communal harmony as crucial values in strengthening the social fabric of Indian society; Basic features of the Constitution

Significant Aspects of Political Processes
The party system in Indian politics; Local self-government in urban and rural areas; the 73rd and 74th Amendments and their implications for inclusive politics; Role and significance of women in politics

15 lectures 30 hrs

Topics for Project Guidance: Growing Social Problems in India:

- Substance abuse- impact on youth & challenges for the future
- HIV/AIDS- awareness, prevention, treatment and services
- Problems of the elderly- causes, implications and response
- Issue of child labour- magnitude, causes, effects and response
- Child abuse- effects and ways to prevent
- Trafficking of women- causes, effects and response
SEMESTER II

Ability Enhancement Course 2 (FC II)

Globalization, Ecology and Sustainable Development

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>TITLE</th>
<th>CREDITS</th>
<th>Notional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBT 207</td>
<td>Globalization, Ecology and Sustainable Development</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Course Objective: To acquaint the students with concepts of Globalization, Ecology and Environment

Learning Outcome: To impart knowledge of Globalization, make students aware about the Problems in Society

Unit I

Globalisation and Indian Society and Human Rights

- **Globalisation and Indian Society**
 - Understanding the concepts of liberalization, privatization and globalization;
 - Growth of information technology and communication and its impact manifested in everyday life;
 - Impact of globalization on industry: changes in employment and increasing migration;
 - Changes in agrarian sector due to globalization; rise in corporate farming and increase in farmers’ suicides.

- **Human Rights**
 - Concept of Human Rights; origin and evolution of the concept; The Universal Declaration of Human Rights; Human Rights constituents with special reference to Fundamental Rights stated in the Constitution

15 Lectures
30 hrs

Unit II

Ecology and Sustainable Development

- **Ecology and Sustainable Development**
 - Importance of Environment Studies in the current developmental context;
 - Understanding concepts of Environment, Ecology and their interconnectedness;
 - Environment as natural capital and connection to quality of human life;
 - Environmental Degradation causes and impact on human life;
 - Sustainable development, concept and components; poverty and environment

15 Lectures
30 hrs

Unit III

Understanding Stress and Conflict in Contemporary Society

- **Understanding Stress and Conflict**
 - Causes of stress and conflict in individuals and society; Agents of socialization and the role played by them in developing the individual;
 - Significance of values, ethics and prejudices in developing the individual;
 - Stereotyping and prejudice as significant factors in causing conflicts in society.
 - Aggression and violence as the public expression of conflict

- **Managing Stress and Conflict in Society**
 - Types of conflicts and use of coping mechanisms for managing individual stress; Maslow’s theory of self-actualisation;
 - Different methods of responding to conflicts in society; Conflict-resolution and efforts towards building peace and harmony in society

15 Lectures
30 hrs

Topics for Project Guidance: Growing Social Problems in India:

- Increasing urbanization, problems of housing, health and sanitation;
- Changing lifestyles and impact on culture.
- Farmers’ suicides and agrarian distress.
- Debate regarding Genetically Modified Crops.
- Development projects and Human Rights violations.
- Increasing crime/suicides among youth.
Evaluation Scheme

The performance of the learners shall be evaluated into TWO Parts.
The learner’s performance shall be assessed by Internal Assessment with 25 marks & by conducting the Semester End Examinations with 75 marks.
Practical Training will have Practical Examination for 50 marks at the end of Semester.
The allocation of marks for the Internal Assessment and Semester End Examinations are as follows:-

I. Internal Exam-25 Marks
 (i) Test– 20 Marks
 (ii) Activities - 5 Marks

II. External Examination- 75 Marks
 (i) Theory Question Paper Pattern:-

<table>
<thead>
<tr>
<th>Question</th>
<th>Based on</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.1</td>
<td>Unit I</td>
<td>20</td>
</tr>
<tr>
<td>Q.2</td>
<td>Unit II</td>
<td>20</td>
</tr>
<tr>
<td>Q.3</td>
<td>Unit III</td>
<td>20</td>
</tr>
<tr>
<td>Q.4</td>
<td>Unit I,II and III</td>
<td>15</td>
</tr>
</tbody>
</table>

 – All questions shall be compulsory with internal choice within the questions.
 – Each Question may be sub-divided into sub questions as a, b, c, d & e, etc & the allocation of Marks depends on the weightage of the topic.

III. Practical Examination – 300 marks (50 marks x 6 core papers)
 Each Core Subject Carries 50 Marks
 Chemistry : 30 marks + 10 marks (Journal)+ 10 marks(Viva-voce)
 Life Sciences and Biotechnology : Major (20 marks), Minor (10 marks), Identification /Spots (10 marks), Viva-voce (5 marks), Journal (5 marks)

IV. Ability Enhancement Course

V. Internal Exam-25 Marks
 (iii) Project– 20 Marks
 (iv) Activities - 5 Marks

VI. External Examination- 75 Marks

Question Paper Pattern
Maximum Marks: 75, Questions to be set:04, Duration: 02 and 1/2 Hrs.
All Questions are Compulsory

Q-1 Objective Questions - 20Marks
 A) Sub Questions to be asked 12 and to be answered any 10
 B) Sub Questions to be asked 12 and to be answered any 10
 (*Multiple choice / True or False / Match the columns/Fill in the blanks)
Q-2 Full Length Question – 20 Marks
 OR Full Length Question

Q-3 Full Length Question – 20 Marks
 OR Full Length Question

Q-4 Short Notes – 15 Marks (To be asked 06 To be answered 03)

Note: Theory question of 15 marks may be divided into two sub questions of 7/8 and 10/5Marks.
References

9. Guyton, Text book of Medical Physiology
10. Concise Medical Physiology- Sujit K Chaudhari
12. Human Anatomy- Marieb
17. Biotechnology: Environmental Processes- Rehm and Reed- Wiley
18. Molecular Biotechnology- Glick and Pasterman ASM Press
19. Food Microbiology- Frazier
20. Industrial Microbiology- A. H. Patel
21. Industrial Microbiology- L. E. Casida- John Wiley & Sons
27. Fundamentals of Biochemistry. 3rd Edition (2008), Donald Voet & Judith Voet , John Wiley and Sons, Inc. USA
36. Culture of Animal cells- Ian Freshney -- John Wiley & Sons
37. Principles and Practice of Animal Tissue culture- Sudha Gangal - University Press
39. Experiments in Plant tissue culture- Dodds and Roberts- Cambridge University Press
42. Text book of Medical Microbiology, Anantnarayan
43. Microbiology- Frobisher
44. General Principles of Microbiology- Stanier
46. Genetics, (2006) Strickberger MW - (Prentice Hall, India)
49. Textbook of basic and clinical immunology, 1st edition (2013), Sudha Gangal and Shubhangi Sontakke, University Press, India
50. Immunology, 7th edition (2006), David Male, Jonathan Brostoff, David Roth, Ivan Roitt, Mosby, USA.
51. Introduction to Immunology- C V Rao- Narosa Publishing House
52. Cell and Molecular Biology – De Robertis- Lippincott Williams& Wilkins
54. Essential iGenetics- Peter Russell - Pearson Education
55. Microbial Genetics- Freifelder – Narosa Publishing House
56. Genes XI, 11th edition (2012), Benjamin Lewin, Publisher - Jones and Barlett Inc. USA
60. Molecular Biology: genes to proteins, 4th edition (2011), Burton E Tropp Jones& Bartlett Learning, USA