

ours	e: Biotechno	ology	Sei	nester: I
SR. NO.	COURSE CODE	COURSE TITLE	NO. OF LECTURES / WEEK	NO. OF CREDITS
1	1.14	FYBSc	4	
1	SBT101	INTRODUCTION TO BIOTECHNOLOGY	3	2
2	SBT102	GENETICS	3	2
3	SBT1PR1	PRACTICAL	6	2
4	SBT103	BIODIVERSITY, EXPERIENTAL MODELS AND ECOLOGY	3	2
5	SBT104	TECHNIQUES IN BIOLOGICAL SCIENCES	3	2
6	SBT1 PR2	PRACTICAL	6	2
7	SBT105	FUNDAMENTALS IN CHEMISTRY 1	3	2
8	SBT106	FUNDAMENTALS IN CHEMISTRY 2	3	2
9	SBT1PR3	PRACTICAL	6	2

Course code:	Introduction to Biotechnology (Credits : 2 Lectures/Week: 3)	
SBT101		
DDIIOI	Objectives:	
	• To acquaint students with the various fields in Biotechnology	
	 To provide an overview of the different applications of Biotechnology 	σV
	 To offer an understanding of Fermentation Techniques 	J
	To otter all allocistanding of refinemation rechniques	
	Outcomes:	
	At the end of this course the student would have a good understanding of th	e field
	of Biotechnology, its scope and applications. Also, the student will be well	
	familiar with a very important aspect viz. Fermentation Techniques which a	re
	most widely used in industry.	
	Scope and Introduction to Biotechnology	
	a) Introduction	15 L
Unit I	i) Definition.	
	ii) History of Biotechnology.	
	iii) Traditional and Modern Biotechnology.	
	b) Branches of Biotechnology (Red Biotechnology, White	
	Biotechnology, Blue Biotechnology, Green Biotechnology)	
	i) Medical Biotechnology.	
	ii) Industrial Biotechnology.	
	iii) Marine and Aquatic Biotechnology.	
	iv) Agricultural Biotechnology.	
	v) Environmental Biotechnology	
	c) Milestones in Biotechnology	
	d) Current scenario in India	
	e) Biosafety and Ethics in Biotechnology	
	Applications of Biotechnology	
	a) Agriculture	15 L
Unit II	i) Biotechnological applications in crop and livestock	
	improvements	
	ii) Modifications in Plant Quality - Golden rice; Hybrid crops	
	iii) Molecular Pharming, Plant based vaccines	
	b) Environmental Biotechnology	
	i) Renewable energy resources	
	ii) Bioremediation	
	c) Industrial Biotechnology	
	i) Food Biotechnology	
	ii) Biopharmaceutical Applications	
	 d) Advances in Biotechnology i) Human Genome Project 	
	i) Human Genome Projectii) Animal Cloning	
	iii) Genetic counseling and Gene therapy	
	iv) Diagnostics and therapeutic molecules	
	Introduction to Fermentation Technology	
	a) Fermentation: Design and systems	15 L
	i) Design of a basic fermentor	

Unit I	II ii) Baffles , Spargers, Impellers
	iii)Mechanically agitated and Pneumatically agitated bioreactors
	iv)Unique designs of bacterial and fungal fermentations
	b) Fermentation Technology& types
	Microbial fermentations- Types of fermentation with an example each:
	Surface, Submerged, Aerobic and Anaerobic fermentation, Solid state
	fermentation.
	c) Applications of Fermentation Technology:
	(Flow-sheet format)Antibiotics, Vaccines, Enzymes and Beverages.
Additi	onal References:
	Dubey R C. (2006). A textbook of Biotechnology. S Chand and Company Ltd.
2.	Ramavat K. G., and Gopal S. (2009). Comprehensive Biotechnology. 4 Th Revised
	Edition. S. Chand and Company Ltd.
3.	Bhatia S. C. (2005). Textbook of Biotechnology. Atlantic Publishers.
4.	Kalaichelvan P. T., and Pandi I.A. (2007). Bioprocess Technology. MJP Publishers.
5.	McNeil B., and Harvey L. M. (1990). Fermentation – A practical approach. Oxford
	University Press.
6.	Puvanakrishnan R., Sivasubramanian S., and Hemalatha T. (2012). Microbial
	Technology – Concepts and applications. MJP Publishers.
7.	Casida L E. (1968). Industrial Microbiology. John Wiley and Sons.
8.	Patel A H. (1984). Industrial Microbiology. Macmillan India Ltd.
9.	Stanbury P., Whitaker A., and Hall S. (1995). Principles of Fermentation Technology.
	2 nd Edition. Butterworth Heineman.

Course	Genetics (Credits : 2 Lectures/Week: 3)				
code:					
SBT102					
	Objectives:				
	To acquaint students with concepts in Genetics				
	To understand the concept of heredity and variation				
	To reinforce the structure and organization of genetic material				
	To establish a clear knowledge of the role of genetic material in bacteria and	l			
	viruses in genetic analyses: Plasmids, cosmids, transposons				
	Outcomes:				
	At the end of this course the student would be equipped with the knowledge	and			
	understanding of the basic concepts in eukaryotic and prokaryotic genetics.				
	Fundamentals of Genetics Introduction				
	a) Mendel's Law of Heredity	15 L			
Unit I	i) Monohybrid Cross: Principle of Dominance and segregation				
	ii) Dihybrid Cross: Principle of Independent Assortment				
	iii) Trihybrid Crosses				
	iv) Rediscovery of Mendel's principles				
	v) Applications of Mendel's Principle; Punnett Square				
	vi) Mendel's Principle in Human Genetics, Pedigree analysis and				
	Examples of Human Genetic traits				
	b) Extension of Mendelian Genetic Principles; Incomplete Dominance				
	and Co-dominance				
	i) Multiple alleles ; Allelic series				
	ii) Variations among the effect of the mutation				
	iii) Genotype and Phenotype				
	c) Environmental effect on the expression of human genes				
	i) Gene interaction and Epistasis				
	Structure and Organization of Eukaryotic Genetic Material				
	a) Structure of Eukaryotic Chromosomes	15 L			
Unit II	i) Structure of Chromosomes				
	ii) Shapes of metaphase chromosomes				
	iii) Histone and non-histone proteins				
	b) Packaging of DNA				
	i) Nucleosome structure				
	ii) Packing of DNA into chromosome				
	c) Chromosome study - Chromosome banding - Types				
	d) Karyotype Analysis				
	i) Study of human karyotype				
	Study of genetic abnormalities (Turner's Syndrome, Klinefelter's				
	syndrome, Down's Syndrome, Cri-du-chat Syndrome, Philadelphia				
	Syndrome)				
	Microbial Genetics				
	a) Structural characteristics of Bacterial and Viral chromosomes	15 L			
	i) Bacterial Chromosome				
Unit III	ii) Phage Chromosome				
	b) Genetic analysis of bacteria				
	i. Prototrophs and Auxotrophs				
	c) Bacteriophages and other carriers				
	i) Lytic and Lysogenic cycle				

ii) Development of a phage

	1	1	U				
iii)	Introduction	to other	carriers	like Plasmids,	cosmids and	transposons	l

Additional References:

- Russell P. J. (1998). Genetics. 5th Edition. Benjamin/Cummings Publishing Company Inc.
- Russell P. J. (2016). Essential iGenetics. 3rd Edition. Pearson Education..
- 3) Gardner E., Simmons M., and Snustad D.P. (1991). Principles of Genetics. 8th Edition. John Wiley and Sons Inc.
- 4) Maloy S. R., Cronan J. E., and Freifelder D. (2006). Microbial Genetics. 2nd Edition. Narosa Publishing House.

Course	Biodiversity, Experimental Models and Ecology		
code: SBT103	(Credits : 2 Lectures/Week: 3)		
	Objectives:		
	To acquaint students with concept of diversity in Biology, particularl	y in	
	relation to plant, animal, and microbial diversity.		
	To introduce the various types of experimental models used in Biolog	gical	
	Sciences		
	\succ To study the role of the ecosystem and the various interactions that su	istains	
	it.		
	Outcomes:	nt of	
	At the end of this course the student would have the knowledge of the conce biodiversity. The student will learn about some popularly used model organi		
	and their role in understanding Biological processes. Also the student should		
	able to understand the constitution of the ecosystem and appreciate the impo		
	of the various interactions of the ecosystem.	rtanee	
	Biodiversity		
	a) Biodiversity	15 L	
Unit I	i) Concept of biodiversity		
	ii) Taxonomical, Ecological and genetic diversity and its significance		
	b) Introduction to plant and animal diversity		
	c) Introduction to microbial diversity (Structure, Habitats,		
	Examples & Applications)		
	i) Eubacteria		
	ii) Archaebacteria		
	iii) Protists		
	iv) Viruses		
	d) Bacteria		
	i) Classification, Types and morphology (size, shape and		
	arrangement) ii) Reproduction & growth- Binary fission, conjugation and endospore		
	formation		
	iii) Significance and uses of bacteria		
	e) Biotechnology in Biodiversity conservation		
	i) Field Gene Banks		
	ii) Seed Banks		
	iii) Pollen Banks		
	iv) DNA Banks		
	v) Germplasm preservation: Cryobiology		
	f) Biotechnology in enrichment of Biodiversity		
	Experimental Models		
Unit II	a) Significance and criteria for selection	15 L	
Unit II	b) Eukaryotic experimental organisms		
	i) Drosophila melanogaster		
	ii) Albino mouse		
	iii) Guinea pig		
	iv) Hamster		
	v) Monkey		
	vi) Saccharomyces cerevisiae		
	vii)Neurosporacrassa		

		1
	viii) Zea mays	
	ix) Pisumsativum	
	c) Prokaryotic experimental organisms	
	i) Escherichia coli	
	ii) Caulobactercrescentus	
	Ecosystem and Interactions	
	a) Ecology and Biogeography	15 L
Unit III	ii. Ecosystems, Definition and Components.	
Unit III	iii. Structure and Function of Ecosystems	
	iv. Aquatic and Terrestrial Ecosystems, Biotic and Abiotic Factors,	
	Trophic Levels.	
	v. Food Chain and Food Web, Ecological Pyramids (Energy, Biomass	
	and Number)	
	vi. Nutrient Cycle and Biogeochemical Cycles: Water, C, O, N and S.	
	b) Interactions- Commensalism, Mutualism, Predation and	
	Antibiosis, Parasitism.	
Additiona	l References:	
	navat K. G., and Gopal S. (2009). Comprehensive Biotechnology. 4 Th Revised	l
Edi	tion. S. Chand and Company Ltd.	-
	ley J. M., Sherwood L., Sherwood L. M., WoolvertonC. J., Woolverton C.	
	scott's Microbiology. (2010). 8 th Edition. McGraw Hill.	
	tra S. C. (2011). Environmental Science. 2 nd Edition. New Central Book Agen	(\mathbf{D})
Ltd.		icy (1)
	Im E. P., and Barrett G. W. (2005). Fundamentals of Ecology. Thomson	
	oks/Cole.	C
	ma P. S., and Agarwal V. K. (1983/2016Rp). Environmental Biology: Principl	es of
	logy. S. Chand and Company Pvt. Ltd.	
	sell P. J. (1998). Genetics. 5th Edition. Benjamin/Cummings Publishing Comp	bany
Inc.		
	sell P. J. (2016). Essential iGenetics. 3 rd Edition. Pearson Education.	
	dner E., Simmons M., and Snustad D.P. (1991). Principles of Genetics. 8th E	Edition.
Joh	n Wiley and Sons Inc.	
	121 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Course	Techniques in Biological Sciences (Credits : 2 Lectures/Week:3)				
code: SBT104					
501104	Objectives:				
	To provide a basic understanding of the need and methods of sterilization	ation			
	 To impart skill in handling and culture of Microorganisms 				
	 To reinforce the use of microscope and study the various types of stains 				
	and staining methods to be used for visualization of specimens.				
	Outcomes:				
	At the end of this course the student would be equipped with the knowledge	and			
	understanding of the basic skills in laboratory techniques viz. sterilization,				
	microbial cell culture & cell lines techniques, microscopy and staining techniques				
	to view specimens under a microscope.	-1			
	Sterilization Techniques				
	a) Sterilization and Disinfection	15 L			
Unit I	i) Definitions of and differences between Sterilization and				
	disinfection				
	ii) Applications of sterilization and disinfectants in Biological				
	sciences.				
	iii) Physical agents -				
	Sunlight, Drying, heat, Steam under pressure, Gases, Radiation				
	and filtration				
	iv) Chemical agents and their mode of action-				
	Phenol and Phenolic compounds; Aldehydes, Halogens,				
	Quaternary Ammonium compounds, heavy metals, Alcohols				
	and Detergents				
	v) Ideal Disinfectant - examples and evaluation of				
	disinfectants				
	Microbial Cell Culture Techniques				
	a) Microbial Cell Culture Techniques	15 L			
Unit II	i) Nutrition and Cultivation of microorganisms- Carbon, Oxygen,				
	Hydrogen, Nitrogen, Phosphorous, Sulphur& Growth factors				
	ii) Classification of different nutritional types of organisms				
	b) Design and types of culture medium				
	i) Liquid and Solid media,				
	ii) Simple/ basal media and complex media,				
	iii) Synthetic, Enriched, Enrichment media,				
	iv) Selective, differential and indicator media				
	v) Sugar media, transport media				
	vi) Anaerobic media				
	c) Concept of isolation and methods of isolation, pure culture				
	techniques				
	d) Culturing anaerobic organisms				
	e) Preservation of microbial cultures - Principle & methods				
	Microscopy and Staining Techniques	1.5.5			
	a) Microscopy- Introduction, Definition, general applications in	15 L			
Unit III	biological sciences				
	b) Types of microscopy				
	i) Light or Optical Microscope				
	Simple and Compound microscopes. Principle, parts, functions				

	and applications
	ii) Phase contrast microscope
	iii) Dark field/ Dark ground microscope
	c) Stains and staining solutions
	i) Definition of Dye and Chromogen
	ii) Structure of Dye and Chromophore
	iii) Functions of mordant and fixatives
	iv) Natural and synthetic dyes
	v) Simple staining, Differential staining and Acid fast staining with
	examples
Additional R	eferences:

- Pelczar M.J., Chan E.C.S., Kreig N.R. (2006). Microbiology. 6th Edition. The Mc Grew Hill Companies Inc., NY.
- Willey J. M., Sherwood L., Sherwood L. M., Woolverton C. J., Woolverton C. Prescott's Microbiology. (2010). 8th Edition. McGraw Hill.
- Ananthanarayan R. and Panikar C. K. J. (2009). Textbook of Microbiology. 8Th Edition. Universities Press.

Course	Fundamentals in Chemistry – I			
code:	(Periodic table and Periodicity of elements, Concepts in Organic			
SBT105	Nomenclature, Water and buffers) (Credits : 2 Lectures/Week: 3)			
	Objectives:			
	> To provide an overview of the Periodic Table and relate elements specifically			
	important in Biological systems.			
	> To acquaint students with basic concepts of Chemistry like Classification and			
	Nomenclature of organic compounds.			
	\succ To study the nature and role of water and buffers in relation to the bio	logical		
	system.			
	> To equip the student with skills required for calculations in preparat	tion of		
	solutions of various concentrations and strengths.			
	Outcomes:			
	At the end of this course, the student would be well versed with the di	fferent		
	chemical elements with special emphasis on Biologically active elements.			
	The Nomenclature of organic compounds (with special emphasis on Bio-c	organic		
	molecules and industrially important compounds).	1		
	Also, an overview of the Nature and role of water and buffers is being introd			
	to help the student appreciate the importance of the various buffer systems and	nd		
	their applicability in Biotechnology.	1		
	Periodic Table and Periodicity of elements	15 L		
Unit I	a) Long form of Periodic Table	13 L		
Chit I	i. Classification of elements			
	ii. transition elements			
	iii. and inner transition elements			
	b) Periodicity in properties of elements :			
	(Simple Numerical problems based on topic to be covered)			
	i. Ionic size and Atomic size			
	ii. Ionization gain enthalpy iii. Electron enthalpy			
	iv. Slater's rule ; Effective nuclear charge			
	v. Electronegativity: Pauling, Mulliken and AlredRochow			
	electronegativity			
	Nomenclature of Organic compounds			
	a) IUPAC Nomenclature and Classification of organic compounds	15 L		
Unit II	i) Alkanes			
	ii) Alkenes			
	iii) Alkynes			
	iv) Cyclic Hydrocarbons/Alicyclic Hydrocarbons			
	v) Aromatic compounds			
	vi) Alcohols and Ethers			
	vii) Carboxylic acids and its derivatives			
	viii) Amines and Amides			
	ix) Alkyl Halides			
	x) Heterocyclic compounds			
	b) Applications of organic molecules			
	i) Applications of organic compounds in biological sciences- Brief			
	concept of bioorganic molecules			
	ii) Industrial applications of organic compounds			
	c) Electronic Effects of organic compounds			
		•		

r		
	i) Inductive Effect	
	ii) Electromeric Effect	
	iii) Mesomeric Effect	
	iv) Hyperconjugative Effect	
	v) Resonance	
	Chemical Bonding	
	a) Ionic Bond	15 L
Unit III	i) Nature of Ionic bond	
	ii) Structure of NaCl, KCl and CsCl	
	iii) Factors influencing the formation of ionic bonds	
	b) Covalent Bonds	
	i) Nature of covalent bond	
	Structure of CH ₄ , NH ₃ , H ₂ O	
	c) Coordinate Bonds - Nature of coordinate bond	
	d) Non-covalent Bonds – Van Der Waal's Forces: Dipole-dipole and	
	dipole-induced dipole	
	a) Hydrogen Bonds	
	i) Theory of Hydrogen bonding	
	ii) Types of Hydrogen bonding with examples RCOOH, ROH	
	e) Salicyladehyde, Amides and Polyamides	
Addition	al References:	
	er, D. F. and Atkins, P. W. 1999, <i>Inorganic chemistry</i> , 3 rd Ed., Oxford Unive	ersity
Press	· · ·	cruty
	, W. L., 1993, <i>Modern inorganic chemistry</i> , McGraw Hill Book Co.	
-	las, B. E. and McDaniel, H., Concepts and models in inorganic chemistry, 19	9/1 3
· · ·	., John Wiley & Sons, Inc., New York,	77,5
	ey, J.E., 1993, <i>Inorganic Chemistry</i> , Prentice Hall.	
	J.D., 1993, Concise Inorganic Chemistry, Flendee Hall.	
	er D. F. & Atkins P. W., 1994 <i>Inorganic Chemistry</i> , third Edition, Oxford pre	
· · · · · · · · · · · · · · · · · · ·	ison, R. T.; Boyd, R. N. 2012. Organic Chemistry. Dorling Kindersley (India	
	Pearson Education).	a) F vi.
		4 I 4 d
о) ГШа (Door	, I. L. 2012. Organic Chemistry (Volume 1). Dorling Kindersley (India) Pv	i. Liu.
	son Education).	
	nons, T.W.G. 2009. Organic Chemistry. John Wiley & Sons, Inc.	
	Tuli and Anand, Advanced Inorganic Chemistry, Volume I and II	• ,
ТТ) Praka Volu	nsh,S., Tuli, G.D., Basu, S.K., Madan, R.D., Advanced Inorganic Cher	nistry,
	er, D.F., P.W. Atkins, C. H. Langford, 3rd edition, <i>Inorganic Chemistry</i> , O	Dxford
	ersity Press	2 ATOIN
	J.D. Concise Inorganic Chemistry, (1991), ELBS	
· · · ·	las, B.E. and McDaniel, D.H., (1970), Concepts & Models of Inorganic Cher	nistrv
, 0	M.C. and Selbin, J., (1962), <i>Theoretical Inorganic Chemistry</i> , ACS Publicatio	•
	s E. Huheey, <i>Inorganic Chemistry</i> , (1983), Harper & Row Publishers, Asia.	
10,04110		

Course code: SBT106	Fundamentals in Chemistry - II (Thermodynamics, Stereochemistry and Chemical Bonding)(Credits : 2 Lectures/Week: 3)	ł
	Objectives:	
	\succ To acquaint students with the concepts and fundamental	ls of
	Thermodynamics.	
	> To build concepts in Stereochemistry by providing an understanding	of the
	relative spatial arrangement of atoms in molecules.	
	> To help students understand the types and significance of chemical bond	ls.
	Outcomes:	
	This Course is designed to impart basic knowledge in the ar	ea of
	Thermodynamics.	
	The students will be able to understand Stereochemistry of organic molecul	es and
	their practical significance	
	The student will also be able to appreciate the nature and role of chemical bo	onds
	in the formation of compounds. This is followed by an emphasis on practical	
	applications.	
	Thermodynamics	
	a) Introduction	15 L
Unit I	i) System, surrounding, boundaries, sign conventions, State Functions	
	ii) Internal Energy and Enthalpy: Significance, examples	
	(Numericals expected)	
	a) Thermodynamics	
	i) Laws of thermodynamics and its limitations, Mathematical	
	expression	
	ii) Qualitative discussion of Carnot cycle for ideal Gas and Mechanical	
	efficiency	
	iii) Laws of Thermodynamics as applied as to biochemical systems	
	Concept of entropy, Entropy for Isobaric, Isochoric and Isothermal	
	processes	
	Stereochemistry	
	a) Isomerism	15 L
Unit II	i) Types of isomerism- chain, position and functional	
	ii) Stereoisomerism	
	Chirality	
	a) Geometric Isomerism and Optical Isomerism	
	i) Enantiomers	
	ii) Diastereomers	
	iii) Racemic mixtures- Cis-Trans, threo, erythro and miso isomers	
	iv) Diastereomerism (Cis-trans isomerism) in Alkenes and	
	cycloalkenes	
	Cycloalkynes (3and 4 membered ring) a) Conformation	
	i) Conformation i) Conformations of ethane	
	ii) Difference between configuration and conformation	
	a) Configuration	
	i) Asymmetric Carbon atom	
	ii) Stereogenic /Chiral centres	
	iii) Chirality	
	iv) Representation of configuration by "flying wedge formula"	
	iv, representation of configuration by frying wedge formula	

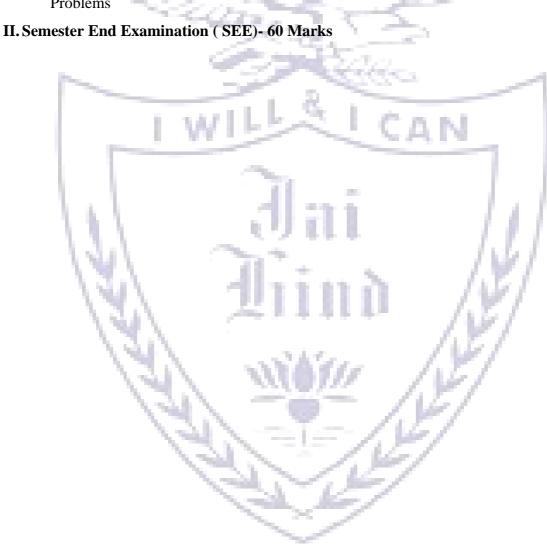
	a) Projection Formulae	
	i) Fischer, Newman and Sawhorse	
	i) The interconversion of the formulae	
	Water and Buffers	15 T
	a) Chemistry of Water	15 L
	i) Properties of Water	
Unit III	ii) Interaction of water with solutes -polar, non-polar and charged	
	iii) Non- polar compounds in water - change in its structure &	
	hydrophobic effect	
	iv) Role of water in biomolecular structure and function	
	v) Water as a medium for life	
	a) Solutions	
	i) Normality	
	ii) Molarity	
	iii) Molality	
	iv) Mole fraction	
	v) Mole concept	
	vi) Solubility	
	vii)Weight ratio, volume ratio, and Weight: Volume ratio,	
	concentration v/s amount, standard abbreviations	
	Ppb, ppm, micrograms, nanograms, millimoles and milliequivalents	
	(numericals expected)	
	a) Primary and Secondary standards	
	i) Preparation of standard solutions	
	ii) Principle of volumetric analysis	
	a) Acids and bases	
	i) Lowry-Bronsted and Lewis concepts	
	ii) Strong and Weak acids and bases	
	iii) Ionic product of water : pH, pKa, pKb	
	iv) Hydrolysis of salts	
	a) Buffer solutions	
	i) Concept of buffers	
	ii) Types of buffers	
	iii) derivation of Henderson equation for acidic and basic buffers	
	iv) pH of buffer solution	
	Blood buffer system	
	al References:	
1. P	uri, B. R., Sharma, L.R., and Pamania, M.S. (2017). Physical Chemistry, 47th	
E	dition, Vishal Publishing Company.	
2. K	apoor, K.L. (2006). Textbook of Physical Chemistry.	
Ν	IcMillan Publishers	
3. B	arrow, G.M. () Physical Chemistry. 6th Edition. Tata McGraw Hill Publishir	ig Co.
	td. New Delhi	C
	tkins P. W., and Paula J. De. (2014). Physical Chemistry. 10th ed., O	Oxford
	niversity, 12 press.	
	evine, I. N., <i>Physical Chemistry</i> , 6 th Edition. 2010, Tata McGraw Hill	
6. N	Iorrison, R. T.; Boyd, R. N. (2012). Organic Chemistry. Dorling Kindersley	(India)
	vt. Ltd. (Pearson Education).	a) Deve
	inar, I. L. (2012). Organic Chemistry (Volume 1). Dorling Kindersley (Indi	a) Pvt.
L	td. (Pearson Education).	

- 8. Solomons, T.W.G. (2009). Organic Chemistry. John Wiley & Sons, Inc.
- 9. Kalsi, P. S. (2005) Stereochemistry Conformation and Mechanism. New Age International
- 10. Ahluwalia, V.K.; Parashar, R.K. (2006) *Organic Reaction Mechanisms*.Narosa Publishing House.
- 11. Mukherji; Singh; Kapoor. (2002) Reaction Mechanisms in Organic Chemistry.McMillan
- 12. Plummer D. (2001). An Introduction to Practical Biochemistry. 3rd Edition. Tata McGraw Hill Edu. Pvt. Ltd. New Delhi, India.
- 13. Lehninger, Nelson D and Cox M. (2008). Principles of Biochemistry. 5th Edition. W.H. Freeman and company, NY.
- 14. Murray R. Harper's Illustrated Biochemistry. (2017). 27th Edition. Lange Publications.

Semester I – Practical

Course	Introduction to Biotechnology & Genetics
Code:	(Credits : 2 Practicals/Week :6)
SBT1PR1	1. Introduction to Biotechnology Laboratory
	2. Introduction to glassware used
-	3. Introduction to common laboratory instruments
	Electronic Balance, pH Meter, Water Bath, Hot air Oven, Autoclave,
	Incubator, Rotary Shaker, Vortex mixer, Centrifuge
	4. Meat tenderization using papain
	5. Fermentative production of alcohol
Pres.	6. Enumeration of microbes using micrometer stage slide
	7. Microscopic determination of yoghurt/ milk microbial flora
	8. Qualitative analysis of DNA by DPA method
	9. Qualitative analysis of RNA by Orcinol method
	10. Isolation of gDNA from onion sample
	11. Differential staining of WBC
	12. Study of Karyotype
	13. Problems on Mendelian Genetics
- N	14. Problems on Gene Mapping
- N.	15. Study of any branch of Biotechnology and its applications
1	16. Visit to a Biotechnology Institute /Industry and report writing.
· · · · · · · · · · · · · · · · · · ·	17. Internal Differential staining of WBC and Qualitative analysis
	of DNA/RNA
	VVI

Course	Biodiversity, Experimental models and Ecology & Techniques in Biological
code:	Sciences
SBT1PR2	(Credits : 2 Practicals/Week: 6)
	1. Study of permanent slides of BGA
	2. Enrichment of Algae.
	3. Cultivation of fungi and microscopic examination using lacto cotton phenol blue
	4. Observation of pleomorphic Rhizobia from nodules of Fenugreek sample
	5. Staining of plant tissues using single staining technique
	6. Slide culture technique of <i>Nocardia</i> and <i>Streptomyces</i>
	7. Cultivation of drosophila using various media
	8. Differentiation and identification of male and female drosophila from cultured sample
	9. Demonstration of antibiosis
	10. Study of Interactions – Commensalism, Mutualism, Predation, Antibiosis and Parasitism.
	11. Components and working of Simple and Compound microscope
	12. Monochrome staining of bacteria (Bacillus and E. Coli)
	13. Differential staining- Gram staining


	14. Sterilization – Laboratory glassware and media using autoclave
	15. Preparation of media – Nutrient Broth, Nutrient Agar, Mac Conkey
	Agar, Sabouraud's Broth and Agar
	16. Aseptic Transfer technique- Broth in tubes and Molten media in Petri
	plates
	17. Isolation of microorganisms: T streaking method
	18. Preservation of microorganisms: Inoculation on a slant/ Oil overlay/
	Low temperature
	19. Visit to a nature park / Laboratory and report writing.
	20. Internal—Monochrome staining and Isolation of microorganisms

-	
Course	Fundamentals In Chemistry I &II
Code:	(Credits :2 Practicals/Week: 6)
SBT1PR3	1. Safety measures, accidents, first aid and good practices in chemistry
(Theory	laboratory
	2. Working and use of a digital Balance
	3. Functioning and standardization of pH meter
	4. Preparation of standard solutions – Molar, Molal and Normal
	5. Preparation of buffers
	6. Determination of strength of HCl and standardization using borax from
	commercial sample
	7. Qualitative analysis of inorganic compounds – any 3
1	8. Characterization of organic compounds
	a. Containing only CHO elements (no element test). Compounds
1	belonging to following classes
· · · · · · · · · · · · · · · · · · ·	Carboxylic acid
	Phenol
	Aldehyde/Ketone
	Ester
	Alcohol
	Hydrocarbon
	b) Containing CHO and N, S, Halogen elements (elements tests
	to be done. Compounds belonging to following classes
	Amides Amines
	Nitro compounds
	Thiamide
	Haloalkane
	Haloarene
	9. Dissociation constant of weak acids by incomplete titration method
	using pH meter.
	10. Determination of enthalpy of dissolution of salts like KNO ₃
	11. Determination of rate constant for hydrolysis of ester using HCl as
	catalyst
	12. To study the reaction between potassium persulphate and potassium
	iodide kinetically and hence to determine the order of reaction.
	13. Internal – Identification of any two organic compounds

Evaluation Scheme

[A] Evaluation scheme for Theory courses

- I. Continuous Assessment (C.A.) 40 Marks
 - (i) C.A.-I : Test 20 Marks of 40 mins. duration
 - (ii) C.A.-II : Case studies /Infographics / Case studies / Market survey / Model / Problems

