

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: TYBSc Sem VI

Proposed Course: PHYSICS

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2019-20

T.Y.B.S.c Physics Syllabus

Academic year 2019-2020

Semester VI			
Course Code	Course Title	Credits	Lectures /Week
SPHY601	Classical Mechanics	4	4
SPHY602	Solid State Physics	4	4
SPHY603	Nuclear Physics	4	4
SPHY604	Special theory of relativity	4	4
SPHY6PR1	Practical I	4	8
SPHY6PR2	Practical II	4	8

Semester VI- Theory

Course code: SPHY60	Classical Mechanics (Credits: 04, Lectures/Week: 04)	
	Objectives: To learn basic concepts in classical mechanics	
	Outcomes: Students should be able to: 1. understand different aspects of central force motion, moving coord systems, fluid mechanics and mechanics of rigid bodies 2. frame classical Lagrange's equations for various problems encoun in classical mechanics. 3. understand basic concepts of non linear mechanics.	
Unit I	Central Force 1. Motion under a central force, the central force inversely proportional to the square of the distance, Elliptic orbits, The Kepler problem. 2. Moving origin of coordinates, Rotating coordinate systems, Laws of motion on the rotating earth, The Foucault pendulum, Larmor's theorem.	15 L
Unit II	Lagrange's equations 1. D'Alembert's principle, Constraints, Examples of holonomic constraints, examples of nonholonomic constraints, degrees of freedom and generalized coordinates, virtual displacement, virtual work, D'Alembert's principle,	15 L

	illustrative problems.	
	2. Lagrange's equations (using D'Alembert's principle), properties of	
	Lagrange's	
	equations, illustrative problems, canonical momentum, cyclic or	
	ignorable coordinates.	
	Fluid Motion and Rigid body rotation	15 L
	Kinematics of moving fluids, Equation of motion for an ideal fluid,	
	Conservation laws for fluid motion, Steady flow.	
Unit III	2. Rigid dynamics: introduction, degrees of freedom, rotation about an	
	axis:	
	orthogonal matrix, Euler's theorem, Eulerian angles, inertia tensor,	
	angular	
	momentum of rigid body, Euler's equation of motion of rigid body, free	
	motion	
	of rigid body, motion of symmetric top (without notation).	
Unit IV	Non Linear Mechanics	15 L
	1. Nonlinear mechanics: Qualitative approach to chaos, The anharmonic	
	oscillator, Numerical solution of Duffing's equation.	
	2. Transition to chaos: Bifurcations and strange attractors, Aspects of	
	chaoticbehavior	

Textbook:

- 1. PVP: Classical Mechanics, P. V. Panat (Narosa).
- 2. KRS: Mechanics: Keith R. Symon, (Addision Wesely) 3rd Ed.
- 3. BO: Classical Mechanics- a Modern Perspective: V. D. Barger and M. G. Olsson. (Mc Graw Hill International 1995 Ed.)

Additional References:

- 1 Classical Mechanics: Herbert Goldstein (Narosa 2nd Ed.).
- 2.An Introduction to Mechanics: Daniel Kleppner & Robert Kolenkow Tata Mc Graw Hill (Indian Ed. 2007).
- 3. Chaotic Dynamics- an introduction: Baker and Gollub (Cambridge Univ. Press).
- 4. Classical Mechanics: J. C. Upadhyaya (Himalaya Publishing House).

Course: code SPHY602	SOLID STATE PHYSICS (Credits 04: Lectures/Week: 04)		
	Objectives: 1. Understand the basics of crystallography 2. Understand electrical properties of metals and Band theory of solids, 3. Understand the basic concepts of conduction in semiconductors and BCS theory of superconductivity. 4. Demonstrate quantitative problem solving skills. To develop quantitative and conceptual understanding of the core areas of Electronics Outcome: To study the basics of Solid State Physics and Semiconductor Physics		
Unit I	Crystal Physics: The crystalline state, Basic definitions of crystal lattice, basis vectors, unit cell, primitive and non-primitive cells, The fourteen Bravais lattices and the seven crystal systems, elements of symmetry, nomenclature of crystal directions and crystal planes, Miller Indices, spacing between the planes of the same Miller indices, examples of simple crystal structures, The reciprocal lattice and X-ray diffraction.	15	
Unit II	Electrical properties of metals: Classical free electron theory of metals, Drawbacks of classical theory, Relaxation time, Collision time and mean free path Quantum theory of free electrons, Fermi Dirac statistics and electronic distribution in solids, Density of energy states and Fermi energy, The Fermi distribution function, Heat capacity of the Electron gas, Mean energy of electron gas at 0 K, Electrical conductivity from quantum mechanical considerations, Failure of Sommerfeld's free electron Theory, Thermionic Emission.	15	
Unit III	Band Theory of Solids and Conduction in Semiconductors: Band theory of solids, The Kronig- Penney model, Brillouin zones, Number of wave functions in a band, Motion of electrons in a one-dimensional periodic potential, Distinction between metals, insulators and intrinsic semiconductors. Electrons and Holes in an Intrinsic Semiconductor, Conductivity of a Semiconductor, Carrier concentrations in an intrinsic semiconductor, Donor and Acceptor impurities, Charge densities in a semiconductor, Fermi level in extrinsic semiconductors, Diffusion, Carrier lifetime, The continuity equation, Hall Effect.	15	

Unit IV	Diode Theory and superconductivity: Semiconductor-diode Characteristics: Qualitative theory of the p-n junction, The p-n junction as a diode, Band structure of an open-circuit p-n junction, The current components in a p-n junction diode, Quantitative theory of p-n diode currents, The Volt-Ampere characteristics, The temperature dependence of p-n characteristics, Diode resistance.	15
	Superconductivity: Experimental Survey, Occurrence of Superconductivity, destruction of superconductivity by magnetic field, The Meissner effect, London equation, BCS theory of superconductivity, Type I and Type II Superconductors, Vortex state.	
ICA (Internal Continuous Assessment)	NA	
References:	References: 1. M.Ali Omar, 2012, Elementary Solid State Physics-Principles and Applications, Pearson Education 2. S. O. Pillai, 6 th Ed, Solid State Physics, New Age International Publications 3. Millman, Halkias & Satyabrata Jit., 3 rd Ed. Electronic Devices and Circuits, Tata McGraw Hill. 4. Charles Kittel, 7 th Ed, Introduction to Solid State Physics John Wiley & Sons 5. S.O. Pillai, 2008, Modern Physics and Solid State Physics: Problems and solutions, New Age International. Additional References: 1. A. J. Dekker, 1 st edition, Solid State Physics, Prentice Hall. 2. Rolf Hummel, 3 rd Ed, Electronic Properties of Materials, Springer. 3. S. M. Sze, 2 nd ed, Semiconductor Devices: Physics and Technology. John Wiley & Sons. 4. Ashcroft & Mermin, 1 st ed., Solid State Physics: Harcourt College Publisher.	

Course code: SPHY6	Nuclear Physics (Credits: 04, Lectures/Week: 04)	
	Objectives: To learn basic concepts in nuclear physics Outcomes: 1. To understand alpha, beta, gamma decay processes 2. To understand Nuclear models and particle accelerators 3. To learn about elementary particles and quark model	
1. Alpha decay Range, Ioniz of alpha par alpha particl theory of alp 2. Beta decay: energy leve difficulties hypothesis, of Unit II Gamma decay and 1. Gamma decay and isomerism, r 2. Nuclear Mod Liquid drop Mass parab	 Alpha and beta decay Alpha decay: Velocity, energy and absorption of alpha particles, Range, Ionization and stopping power, Nuclear energy levels, range of alpha particles, apha particle spectrum, fine structure, long range alpha particles, alpha decay paradox, barrier penetration (Gamow's theory of alpha decay and Geiger-Nuttal law) Beta decay: Introduction, velocity and energy of beta particles, energy levels and decay schemes, continuous beta ray spectrum, difficulties encountered to understand it, pauli's neutrino hypothesis, detection of neutrino, energetics of beta decay. Gamma decay and nuclear models Gamma decay: Introduction, internal conversion, nuclear isomerism, mossbauer effect Nuclear Models:	15 L
Unit	Nuclear Energy & Particle Accelerators 1. Nuclear energy: Introduction, Asymmetric fission - Mass yield, Emission of delayed neutrons, Nuclear release in fission, Nature of fission fragments, Energy released in the fission of U235, Fission of lighter nuclei, Fission chain reaction, Neutron cycle in a thermal nuclear reactor (Four Factor Formula), Nuclear power and breeder reactors, Natural fusion Possibility of controlled fusion. 2. Particle Accelerators: Van de Graaff Generator, Cyclotron, Synchrotron, Betatron and Idea of Large Hadron Collider.	15 L

Unit	Nuclear force & Elementary particles	15 L
IV	1. Nuclear force: Introduction, Deuteron problem, Meson theory of	
	Nuclear	
	Force- A qualitative discussion.	
	2. Elementary particles: Introduction, Classification of elementary	
	particles, Particle interactions, Conservation laws (linear & angular momentum, energy, charge, baryon number & lepton number), particles and	
	antiparticles (Electrons and positrons, Protons and anti-protons, Neutrons	
	and anti-neutrons, Neutrinos and anti-neutrinos), Photons, Mesons, Quark	
	model (Qualitative).	

Textbook:

- Modern Atomic and Nuclear Physics, A.B.Gupta, Book and Allied Pvt. Ltd., 2014
- Concepts of modern physics, Arthur Beiser, Tata mac graw hill publications, 6th edition
- Nuclear Physics, S. B. Patel, Willey Eastern Ltd, 2nd edition.
- Nuclear Physics, S. N. Ghoshal, S. Chand and publications, 2010.

Additional References:

• Nuclear Physics, D. C. Tayal, Himalayan publishing house, 5th edition.

Course code SPHY604	Special Theory of Relativity (Credits 04: Lectures/Week: 04)		
	Objectives: On sussessful completion students should know 1. The need to improve laws of physics and the attempts in details. How E solved the problem. Understand the importance of postulates of special relativity, Lorentz transfor equations and how it changed the way we look at space and time, Absolutis relativity, Common sense versus Einstein concept of Space and time.	mation	
E	3. Understand the transformation equations for: Space and time, velocity, frequence mass, momentum, force, Energy, Charge and current density, electric and magnetical fields.		
	Outcome: 1. Understand the significance of Michelson Morley experiment and failure of the existing theories to explain the null result		
1	2. Solve problems based on length contraction, time dilation, velocity ac Doppler effect, mass energy relation and resolve paradoxes in relativity lik paradox etc. Learn Minkowki techniques for the same.		
Unit I	Introduction to Special theory of relativity: Inertial and Non-inertial frames of reference, Galilean transformations, Newtonian relativity, Electromagnetism and Newtonian relativity. Attempts to locate absolute frame: Michelson- Morley experiment (omit derivation part), Attempts to preserve the concept of a preferred ether frame: Lorentz Fitzgerald contraction and Ether drag hypothesis (conceptual), Stellar aberration, Attemptto modify electrodynamics. Relativistic Kinematics - I: Postulates of the special theory of	15 L	
Unit II	relativity, Simultaneity, Derivation of Lorentz transformation equations. length contraction, time dilation and meson experiment, The observer in relativity. Relativistic Kinematics - II: The relativistic addition of velocities, acceleration transformation equations, Aberration and Doppler effect in relativity, The common sense of special relativity.	15 L	
	The Geometric Representation of Space-Time: Space-Time Diagrams, Simultaneity, Length contraction and Time dilation, The time order and space separation of events, The twin paradox.		
Unit III	Relativistic Dynamics : Mechanics and Relativity, The need to redefine momentum, Relativistic momentum, Alternative views of mass in relativity, The relativistic force law and the dynamics of a single particle, The	15 L	

	equivalence of mass and energy, The transformation properties of momentum, energy and mass.	
Unit IV	Relativity and Electromagnetism : Introduction, The interdependence of Electric and Magnetic fields, The Transformation for E and B, The field of a uniformly moving point charge, Force and fields near a current-carrying wire, Force between moving charges, The invariance of Maxwell's equations. The principle of equivalence and general relativity, Gravitational red shift.	15 L

Textbook:

- 1. Introduction to Special Relativity:, Robert Resnick, (Wiley Student Edition) 1968

 Additional References:
- 1. Special theory of Relativity, A. P. French, CRC press,
- 2. Very Special Relativity An illustrated guide: Sander Bais Amsterdam University Press.
- 3. Concepts of Modern Physics, Arthur Beiser. Peterson, 6th Edition 2003

Course Code SPHY6PR1 and SPHY6PR2	Practical-I and Practical- II (Credits-08, Lectures/week-16)
SPHY6PR1	1. Study of JFET characteristics
STIT OF KI	2. Study of UJT characteristics
	3. Study of Photo diode characteristics
	4. Study of Photo transistor characteristics
	5. Determination of h/e by photocell
	6. Brewster's law
	7. Koenig's method
	8. Determination of Poisson's ratio
	9. Hall effect
	10. Flat spiral spring
SPHY6PR2	1. R. P. Of Prism
	2. Application of Op-Amp as a Log amplifier
	3. Application of Op-Amp as a differentiator (BB)
	4. IC-555 as a stable multivibrator and VCO
	5. LM-317 as variable voltage source
	6. Schmitt Trigger
	7. Seven segment display
	8. IC 555 as a monostable multivibrator
	9. Determination of mutual inductance by BG
Both	1. Open CRO, Power Supply, and Signal Generator: block diagrams
SPHY6PR1 and	<u> </u>
SPHY6PR2	3.Amplitude modulation
Demonstrations	4. Zeeman Effect
	5. Michelson's interferometer
	6.Iodine absorption spectra
	7.Ultrasonic interferrometer
ICA	NA
(Internal	
Continuous	
Assessment)	
References:	1. D. Chattopadhya, PC. Rakshit & B. Saha, (8th Edition), Advanced
	course in Practical Physics: Book & Allied Pvt. Ltd.
	2. Harnam Singh, (17 th edition 2001), BSc Practical Physics: S.
	Chand & Co. Ltd.
	3. Samir Kumar Ghosh, (4th edition), A Text book of Practical
	Physics: New Central Book Agency
	4. C. L. Arora, (1st Edition) – 2001), B Sc. Practical Physics: S.
	Chand & Co.Ltd.
	5. C. L. Squires, Practical Physics: (3rd Edition), Cambridge
	University Press.
	6. D C Tayal, (I st edition, 2000), University Practical
	PhysicsHimalaya Publication.
	7. Worsnop & Flint, Advanced Practical Physics:

Students will come for 4 turns of 3 hours per week for the laboratory session (Performing practicals).

- ii) Regular Physics Experiments: A minimum of 08 experiments from each group of the practical course are to be performed and reported in the journal.
- **iii) Demonstrations:** Any 05 demonstrations are to be performed by the teacher in the laboratory and students should be encouraged to participate and take observation wherever possible.

Demonstrations are designed to bring about interest and excitement in Physics. Students are required to enter details of these 'demonstration' experiments in their journal.

The certified journal must contain a minimum of 16 regular experiments and 606 demonstrations. A separate index and certificate in journal is must for each course in each semester.

• Semester End Examination (SEE)- 100 Marks

[B] Evaluation scheme for Practical courses

Expt I	Expt II	Journal	Viva	Continuous assessment of rough journal	Total
80	80	20	20	NA	200

Practical examination will be of 6 hours. Students will perform 2 experiments of 3 hours each from group-A and B .

