

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: Life Sciences

Semester: VI

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2019-20

T.Y.B.Sc. Life Science Syllabus

Academic year 2018-2019

	Semester VI		
Course	Course Title	Credits	Lectures
Code			/ Week
SLSC601	Genetics &	4	4
	Immunology II		2
SLSC602	Developmental Biology &	4	4
	Neurobiology II	a	
SLSC603	Fermentation technology & Genetic	4	4
	engineering: A Biotechnological approach II		
SLSC604	Environmental Biotechnology II	4	4
SLSC6PR1	Practical 1	4	8
SLSC6PR2	Practical 2	4	8

Semester VI – Theory

Course:	GENETICS AND IMMUNOLOGY II	
SLSC601	(Credits: 04 Lectures/Week: 04)	
		m and on and y, auto asplant
	I WIE CAN	
	Outcomes: This course is formulated to provide knowledge of Genetics and Immunolo The genome is the blueprint of an organism and it is important to understand mechanisms of inheritance, mutations and gene manipulation. The Immune system protects the body from possibly harmful substances by recognizing and responding to antigens with great precision. Most human diseases result from some loss of this precision. Sometimes the immune sys- is overwhelmed by an infection or a tumor. On other occasions the immune system aberrantly or over-exuberantly responds to innocuous environmentar molecules or microbes – or to self-structures – and this results in a loss of immune regulation that results in disease. Understanding immunology has allowed the prevention of infections by the of vaccines, has helped the medical world develop the ability to transfuse making modern surgery possible, has allowed transplantation to become reality, and has led to rational treatments for allergies and autoimmune dise	the use blood ome a
Unit I	(A) Mechanisms of Inheritance and variation in Eukaryotes:	15L
	 Genetic recombination in Fungi: Life Cycle, recombination in <i>Neurospora</i> and mapping by Tetrad Analysis Genetic recombination in <i>Drosophila:</i> Life Cycle; Recombination – Mapping the genome by two and three factor crosses, co-efficient of co-incidence and interference. Genetic recombination in Humans: Somatic cell Genetics: Use of cell hybrids and hybridomas for gene mapping 	

Unit II	 (B) Mutational Variation: Types of Mutations and Mutagenic agents Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance, Eukaryotic Transposable elements, Induced mutations - Site-Directed mutagenesis using Oligomers, Cassette mutagenicity'; PCR-based methods of mutagenesis Mutagenicity testing – Ames test, SCE Test and Mouse Specific Locus Test. (A) Tools and Techniques in Molecular Genetics: DNA Sequencing – Maxam and Gilbert's method and Sanger and Coulson's method DNA Fingerprinting Nucleic acid in-situ hybridization (FISH) The Human Genome Project and beyond: aims, major features and applications (B) Recombinant DNA Technology: Restriction enzymes and DNA joining Strategies 	15L
	ii. Plasmid vector (pBR322-Cloning Insulin gene)iii. Phage vectors (lambda)	
Unit III	Hypersensitivity, Vaccines and Immunodeficiency: (A) Hypersensitivity: Gell and Coombs classification- Type I: Ag-Ab reactions viz. RIST and RAST Type II: Agglutination to be included Type III: Immunoflourescence, ELISA Type IV: Tuberculin test (B) Vaccines: Passive immunization- i. Preformed antibodies and problems ii. Use of Chimera / humanized antibodies Active immunization- i. Whole organisms (attenuated vs. inactivated ex. Polio) ii. Purified macromolecules (Polysaccharide, toxoid and recombinant antigen vaccines) iii. Peptide Vaccines iv. DNA Vaccines (C) Immunodeficiency: i. B-celled- X-linked agammaglobulinimea ii. T-celled- Di George iii. Combined-SCID iv. Phagocytic- CGD v. AIDS	15L

Unit IV	Transplantation, Tumour Immunology, Tolerance and	15L
	Autoimmunity:	
	(A) Transplantation:	
	i. Types of grafts	
	ii. Tissue typing (serological and MLR)	
	iii. Mechanism of graft rejection	
	iv. Graft vs. host disease w.r.t. bone marrow or cornea	
	(B) Tumour Immunology:	
	i. Role of the immune system, Cell mediated and humoral responses	
	ii. NK cells and macrophages	
	iii. Tumor specific antigens	
	iv. Immunological surveillance	
	v. Immunological escape and potential for therapy	
	6 200	
1.1	(C) Tolerance:	
	i. Mechanism of T cell and B cell tolerance	
	ii. Immunology of pregnancy	
	iii. Role of T- regulatory cells	
	(D) Autoimmunity:	
	i. Mechanisms for induction (Aetiology)	
	ii. Types of Auto immune diseases-organ specific and systemic.	
	Example, Myasthenia gravis, Graves disease, SLE and Multiple sclerosis	
	References:	
	ANA JULEAN AVAIL	
	1. Snustad and Simmons. (2006). Principles of Genetics, 4 th edn. John	
	Wiley and sons.	
	2. Peter Russel (2006). I-Genetics; A Molecular approach, 2 nd edn.	
	Pearson.	
	3. Griffiths et al. (2005). Introduction to Genetic Analysis, 8 th edn.	
	Freeman and co.	
	4. Benjamin Lewin. (2008). Genes IX. Jones and Bartlett publishers.	
	5. S. B. Primrose and R. M. Twyman. (2007). Principles of Gene	
	Manipulation and Genomics, 7 th edn. Blackwell publication.	
	6. W. S. Klug and M. R. Cummings. (2003). Concepts of Genetics,	
	7 th edn. Pearson.	
	7. W. S. Klug, M. R. Cummings, C. A. Spencer. (2006). Concepts of	
	Genetics, 8 th edn. Pearson.	
	8. Tom Strachan and Andrew Read. (2004). Human Molecular	
	Genetics, 3 rd edn. Garland Science pub.	
	9. R.A.Goldsky, T. J. Kindt, B. A. Osborne, J. Kuby. (2003)	
	Immunology 5 th edn. W.H. Freeman.	
	10. C. A. Janeway, P. Travers, M. Walport, M. Shlomchik. (2005).	
	Immunology: The immune system in health and disease, 6 th edn.	
	Garland Science Pub.	
	11. A. K. Abbas, A. H. Litchman. (2000). Cellular and Molecular	
	Inmunology, 5 th edn. Elsevier publication.	
	12. Roitt. (2006). Essential Immunology, 11 th edn. Blackwell	
	12. Note. (2000). Essential minutiology, 11 cuil. Diackwell	

publication.
13. D. Mole, J. Bronstoff, D. Roth, I. Roitt, Mosbey. (2006)
Immunology, 7 th International edn. Elsevier publication.
14. C. V. Rao. (2002). An Introduction to Immunology. Narossa
Publishers.

Course:	DEVELOPMENTAL BIOLOGY AND NEUROBIOLOGY II	
SLSC602	(Credits: 04 Lectures/Week: 04)	
	Objectives: On completion of the course, the student must be able to:	
	1. Describe the cellular and molecular basis of development and genes in	volved
	during the early development.	
	2. Describe the applications of developmental biology in different fields	related
	to treating various conditions and diseases.	
	3. Explain the basics of stem cell research.	
	4. Have a clear understanding about the human sense organs, its trans	duction
	mechanisms and pathways.	
	5. Understand the mechanisms of Prostaglandin inhibition for pain manage	ement.
	6. Discuss the structure of reflex arc and mechanism of muscle contraction	
	7. Explore neurobiological basis of certain behaviours and diseases.	
in the second		
	Outcomes:	
	This course is based on Developmental biology and Neurobiology which f	form
	the fundamental aspects of Life Sciences. Development is a process by wh	
	single cell (the zygote) gives rise to an entire multicellular organism. Duri	
	early developmental stages the cells are totipotent and as they mature they	
	become committed to one particular type. Various genes play a role during	
	early development which helps decide the location of organs, anterior-pos	
	and dorso-ventral axis. Developmental biology gives a clear idea about the	-
	which plays a role during the early development. It further helps us to stuc	ly the
	congenital abnormalities and it can be used to study and treat various	
	conditions/diseases in humans. Neurobiology, on the other hand, is the me	•
	which we communicate with the world. It gives us a clear idea about how	
	work and the pathways and mechanisms which underlie it. This field also	-
	one to understand Pathophysiology of various neurobiological conditions	and
	diseases.	
	VIN WARKE /NT./	
Unit I	Cellular aspects of development:	15L
	i. Basics of stem cells	
	Totipotency (eg. Plant cells and Animal cell Nuclei)	
	Pluripotency (eg. Embryonic stem cells)	
	Multipotency (Hematopoietic stem cells)	
	Oligopotency (eg. Monocytes)	
	ii. Stem cell niche	
	iii. Determination e.g. Drosophila imaginal disc	
	iv. Transdetermination e.g. Drosophila imaginal disc	
	v. Differentiation. E.g. Neural crest cells or hematopoietic cells or as	
	change in gene expression (beta globin gene)	
	vi. Molecular basis of growth and differentiation	
	vii. Genes in early development (with Drosophila as example) Maternal	
	genes, Segmentation genes, Realiasator genes, Homeotic– Drosophila.	
	viii. Cell cycle and its control.	
	xi. Apoptosis	

Semester VI – Theory

Unit II	Applications of developmental biology:	15L
	i. Assisted human reproduction	
	ii. Pre and Post natal diagnosis	
	iii. Congenital abnormalities	
	iv. Aging – Theories of aging	
	v. Regeneration in animal world, Regeneration of Salamander limb	
	(dedifferentiation), Wound healing Vs. regeneration	
	vi. Teratogenesis : Alcohol and Retinoic acid	
	vii. Fundamentals of Stem cell Research	
Unit III	Sensory and motor system:	15L
	i. Human Sense organs: receptors, receptor mechanisms and pathways	
	(Introduction)	
	ii. Visual system: Vision - structure of the eye, retina, photoreceptors	
	(rods and cones) and colour vision, phototransduction, binocular vision,	
100	visual pathway (flow chart only-LGN to visual cortex), light & dark	
	adaptation.	
	iii. Auditory System: Structure of the ear, cochlea and organ of corti	
	receptors 1, Mechanism of transduction, Auditory pathway: (MGN to	
	audio cortex)	
	iv. Vestibular System: Structure of the vestibular labyrinth, maculae and	
	cristae. Mechanism of transduction.	
1	v. Chemosensory system: Olfactory and Gustatory receptors – structure	
	vi. Skin as sense organ: somatic receptors - Types of mechano- receptors,	
1	pain reception & Pain management (example analgesic effect by	
	prostaglandin inhibition - aspirin)`	
	vii. Reflexes: Monosynaptic reflex arc (knee jerk reflex) and	
	polysynaptic reflex arc (tendon reflex)	
	130 21111 /12/	
Unit IV	Neurobiological basis of behaviour and Diseases:	15L
	i. Associative conditioning – Overview	
	ii. Short term memory and Long Term Memory (eg. Aplysia)	
	iii. Addiction – narcotic drugs and their effects on CNS (eg: Opiates)	
	v. Schizophrenia- Positive and negative symptom	
	vi. Prions and Mad cow disease	
	vii. Duchene's muscular Dystrophy	
	viii. Alzheimer's disease	
	ix. Huntington's Disease	
		1

	References:	
	1. Wolpert L., Tickle C., and Arias AA. (2015) Principles of	
	Development, Oxford University Press.	1
	2. Gilbert SF., Barresi M.J.F. (2016) Developmental Biology, Sinauer	l
	Associates, Oxford University Press.	1
	3. R.M.Twyman. (2000) BIOS Instant Notes in Developmental Biology,	
	Taylor & Francis.	
	4. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell	
	J. Molecular Cell Biology. (2000) Molecular Cell Biology, W.H.	
	Freeman.	
	5. Purves P., Augustine G., Fitzpatrick D., Hall WC., LaMantia AS.,	
	White LE. (2011) Neuroscience, Sinauer Associates, Inc.	
	6. Tortora GJ., Derrickson B. (2013) Principles of Anatomy and	
in.	Physiology, John Wiley & Sons Inc	1
	7. Longstaff A. (2011) BIOS Instant Notes in Neuroscience, Taylor &	1
	Francis	
	8. Smith C.U.M. (2002) Elements Of Molecular Neurobiology, Wiley	

Course:		
SLSC603		
	 (Credits: 04 Lectures/Week: 04) Objectives: On completion of the course, the student must be able to: Understand the enzyme technology ., the various methods of immobili of enzymes Understand how the fermentation technology can be applied in medici Basic Knowledge of plant and animal tissue culture and production of secondary metabolites Provide examples of current applications of biotechnology and advance the different areas like medical, microbial, agricultural, plant and animi tissue culture Understand cloning in eukaryotes and applications of recombinant DNA technology and related ethical issues Understand important recent tools used in genetic engineering Understand basic Bioinformatics Outcomes: This course emphasizes the practical use of microbial organisms in the production of vaccines, vitamins, secondary metabolites like per and other biopharmaceuticals. This course also introduces the student to theory of plant and animal tissue culture, organogenesis, somatic embryogenesis, Protoplast isolation and fusion in plant tissue culture. The also introduces the practice and process of culturing animal cells and cell lia alaboratory. Focuses on media preparation, cryopreservation and maintenar of cell lines. This course also focuses on applications in recombinant DNA	ne es in hal A A ne nicillin ne h, course ines in ance
Unit I	technology and Bioinformatics. Enzyme and Pharmaceuticals Production: (A) EnzymeTechnology-	15L
	 (A) Enzyme reciniology- i. Enzyme production; example Amylase (bacterial & fungal) ii. Immobilized Biocatalyst (method of immobilization, applications – biosensors) 	
	 (B) Application of fermentation technology in medicine: Production of Antibiotics (Penicillin) Vitamins (Vit. B12) Vaccines (Polio, HbsAg) Monoclonal antibodies Biopharmaceuticals (Insulin / IFN) 	

Semester VI – Theory

Unit II	Tissue Culture biotechnology:	15L
	(A) Application of fermentation technology Agriculture:	102
	i. Secondary metabolites from plant tissue culture	
	ii. Biopesticides – Bacteria (<i>B. thuringiensis</i>), Virus (Polyhedrosis virus)	
	and fungal (<i>Trichoderma</i>)	
	(B) Plant and Animal Tissue Culture:	
	i. Animal – Laboratory setup, Media, Basic techniques (Disaggregation	
	of tissue and primary culture, maintenance of cell lines.	
	ii. Plant – Media, Basic techniques (callus and suspension culture,	
	organogenesis, & somatic embryogenesis, Protoplast isolation and	
	fusion)	
	Contraction of the second s	
Unit III	Genetic Engineering:	15L
	(A) Cloning in Eukaryotes	
	i. Cloning vectors in yeast	
	ii. Cloning vectors in animal: SV 40, Baculovirus	
	iii. Cloning in plants: Ti plasmid based vectors (binary and Co-	
	integrative vectors), Microinjection method	
	, , , , , , , , , , , , , , , , , , ,	
	(B) Applications of recombinant DNA Technology:	
	i. In animals:	
	- Transgenic animals	
	- Knock-in, Knockouts and Knock-down systems	
	- Giant mouse (MMT promoter growth hormone fusion gene)	
	- Xenopus oocyte as expression system	
	ii. Transgenic plants: Bt cotton and weedicide resistant gene, Genetically	
	modified food	
	iii. Gene therapy (Parkinson disease or SCID)	
	(C) Ethical, legal and social implications of recombinant DNA	
	technology and consumer awareness (labelling of GM foods)	
Unit IV	(A) Tools in genetic engineering	15L
	i. PCR: Polymerase chain reaction	
	Method, Limitations and applications, Types of Primers – Universal,	
	Nested, Poison primers, Types of PCR – Q-PCR, RT-PCR	
	ii. Electrophoresis: Agarose gel electrophoresis (Principle, methodology	
	and applications), PAGE, Two-Dimensional Gel Electrophioresis	
	ii. Blotting techniques: Southern blotting, Nothern blotting, Western	
	blotting	
	iii. Microarrays	
	iv. Cre-Lox system	
	v. CRISPR	
	(B) Bioinformatics:	
	i. Biological databases (Formats: FASTA and GenBank)	
	ii. Sequence annotation	
	iii. Drug designing and Docking (basic concept)	
	iv. Sequence alignment: Pairwise alignment Eg. BLAST, Multiple	

 alignment Eg. ClustalW
v. Phylogenetic trees and concept of bootstrapping
vi. Primer designing
References:
1. Michael L Shuler and Fikret Kargi. (2008). Bioprocess Engineering:
Basic Concepts., Prentice-Hall of India Pvt Ltd.
2. Stanbury P.F., Whitaker A. and Hall S.J. (2007). Principles of
Fermentation Technology. Elsevier India Pvt Ltd.
3. Prescott And Dunn. (2004). Industrial Microbiology. Chapman & Hall.
4. Casida, L.E. (2003) Industrial Microbiology. New Age International
(P) Ltd.
5. S.B. Primrose and Twyman. (2006). Principles of gene manipulation,
7th Ed. Blackwell.
6. R.W. Old and S.B. Primrose. (2004). Principles of gene manipulation,
6th edition, Blackwell.
7. Watson. (20010), Recombinant DNA, 3rd ed. ASM Press.
8. T.A. Brown. (2009). Gene cloning and DNA analysis, 2nd ed. Wiley-
Blackwell.
9. B. Glick et al. (2010). Molecular Biotechnology- Principles and
application of recombinant DNA, 4th ed. ASM Press.
10. D. Clark, N. Pazdernik. (2009) Biotechnology- Applying the genetics to revolution. Academic Press.
to revolution. Academic riess.
AND AND AND
NWN SHE /W/

Will

Course:	ENVIRONMENTAL BIOTECHNOLOGY II	
SLSC604		
SLSC604	 (Credits: 04 Lectures/Week: 04) Objectives: On completion of the course, the student must be able to: Understand the basic sustainability concepts of homeostasis, carryin capacity, recycling. Articulate the interdisciplinary context of environmental issues. Prepare for career success in natural resources and its conservation, public health, environmental monitoring, industrial environmental management. Develop a sense of community responsibility by becoming aware of scientific issues in the larger social context. Develop standards of professional behaviour that include rules of et and etiquette. Understand the basic theoretical concepts and methodologies of both physical and social sciences. Learn how to solve large-scale problems using a multitude of tools a approaches. Outcomes: The students will be introduced to fundamentals of environmental scientific scientific scientific is success.	hics h the and
		nce.
	rural environment and urbanization, natural resources and energy	,
· · · · · ·	conservation, environmental impact analysis and environmental audits,	
	public participation, environmental safety and society.	
Unit I	 (A) Population dynamics : Factors that influence Human Population size and growth, population fluctuations, carrying capacity, density and population reduction (density dependent and independent factors). (B) Urbanization in developing countries. Urban crisis, suburban sprawl, land use planning, urban open spaces, Morbidity caused by air pollution, diseases of future(cancer & respiratory diseases).Urban growth Challenges: water and waste management, , water shortage, using less water, pricing of water. Air pollution and mobility (C) Rural environment : Availability of fresh water, use of fresh water, ground water, contamination of ground water, rural sewage management, freshwater wet lands, Impact of cities on rural environment eg; Delhi & Yamuna, Spread of air pollution, Problems at catchment areas of Dams. (D) Impact of Environmental degradation on Women. 	15L
	(E) Toxic and solid waste management: Toxic Waste Trading: An environmentally destructive trade activity.	

Unit II	(A) Natural resources: energy conservation and renewable energy:	15L
	Reserves of non renewable energy resources: Hidden costs of using	

	natural resources electricity, generation and storing electricity.	
	natural resources electricity, generation and storing electricity.	
	(B) Evaluating energy resources: Nuclear power, coal, Natural gas, biomass burning, gas turbines, biofuels.	
	(C) Alternative energy resources: Geothermal, Tidal/wave power, ocean thermal energy conversions, inland solar ponds, Energy efficient buildings.	
Unit III	 (A) Environmental Impact Analysis of a Development Project: Environmental audit: protocols and data collection and analysis. Case studies of any development projects. (e.g. Solid waste Management of a Municipal corporation, and an industrial plant etc) (B) Public Participation: Methodology and approach for public participation in Environmental & development decision making. Example: Plachimada struggle, Narmada Bachao andolan, Chipko movement Regulatory requirements for public participation eg Jaitapur or ENRON issues. Advantages and disadvantages of Public participation. Identification of participants and conflict management. Incorporation of results in decision makings. 	15L
Unit IV	 (A) Society and environment: Nuclear proliferation, environment and war : E.g. use of Agent orange in Vietnam war, cost, benefit and risks, cost benefit analysis, risk management (EIA and Environment protection agency) perception of risk and gain, setting up standards, International cooperation - Treaties, planning for future. Vision of the world 2040. (B) Safety, Health and Environment: Lessons after 25 years of Bhopal gas tragedy. Perspectives and concerns of citizens: Environment as the ultimate beneficiary / loser. Safety and Health Hazards: Identification of potential safety and health hazards in industrial and development projects, reduction strategies, policies and legislation, international and national perspective, safety standards and management systems, ISO 18000 (Occupational Health and Safety Management Systems) 	15L
	 References: 1. Misra and Pandey (2011), "Essential environmental studies", Ane Books 2. Martens (1998), "Health and climate change ", Earth Scan 3. Saxena (1998), "Environmental Analysis of soil and air", Agrobotanica 4. Chakraborti (2005), "Energy efficient and environment friendly technologies for rural development ", Allied Publishers 	

5. Dash M C (2004) "Ecology, chemistry and Management of environmental Pollution ",Mac Millan India 6. Nayak ,Amar(2006) "Sustainable sewage water Management ",Mc Millan India 7. Dolder, Willi (2009), "Endangered animals, Parragon 8. Gupta P K (2000)," Methods in environmental Analysis", Agrobio (India) 9. Fumento, Michael (2003),"Bioevolution : How biotechnology is changing our world", California encounter Books 10. Kapur (2010) "Vulnerable India ", SAGE 11. Jacob, Miriam(2004)," Silent Invaders", Orient Longman i, 12. Mc Cafferty (1998),"Aquatic Entomology ", Jones and Barlett 13. Subramnyam (2006), "Ecology ", 2nd ed.Narosa 14. Dilip Kumar, Rajvaidya (2004)," Environmental Biotechnology", APH 15. Sharma and Khan (2004)," Ozone Depletion and Environmental Impacts", Pointer publishers

Semester VI – Practical

Course:	Practical 1 (Credits: 04 Practicals/Week: 02)		
SLSC6PR1	Paper – I: Genetics and Immunology		
	1. Giant Chromosome preparation (Drosophila / Chironomus larvae)		
	2. Estimation of bacteriophage titre by plaque assay		
	3. Effect of UV radiation on microorganisms (Light repair and Dark repair)		
	4. Isolation of antibiotic resistant / auxotrophic mutants using Replica plate		
	5. PCR		
	6. Ouchterlony test for Immunodiffusion		
-	7. Mancini test – Single Radial Immunodiffusion		
	8. Agarose slide gel electrophoresis of Serum		
	9. Separation of Mononuclear cells		
	10. ELISA		
Pres.	Paper – II:: Developmental Biology and Neurobiology		
	1. Effect of boron / calcium on pollen tube germination in Vinca rosa or any		
	other suitable sample		
	2. Role of GA in seed germination		
	3. Plant Tissue Culture: Initiation of plant tissue culture from germinated		
	chick pea/any other suitable source		
	4. Live observations of Development of C. Elegans/Dictostelium/		
	Drosophila/ Zebra fish		
1	5. Imaginal discs of <i>Drosophila</i>		
	6. Regeneration in earthworm / any other suitable system / hydra (using		
1	permanent slide / photographs)		
- N	7. Differential staining of white and grey matter of vertebrate brain.		
	8. Temporary mounts of any three of the following:		
	a) Cornea of prawn.		
	b) Statocyst of prawn.		
	c) Columella of bird.		
	d) Striated / smooth muscle fibre.		
	e) Methylene blue staining of earthworm nerve cord or any other suitable		
	nerve cord or brain to observe organization of neuronal cell bodies in		
	invertebrates		
	f) Olfactory & gustatory sensillae		
	g) Histological staining of neuronal tissue using Heamotoxilin-Eosin		
	stainningorNessil's staining.		
	9. Making clay model of vertebrate brain and cranial nerves		
	10. Stroop test		
	11. Olfactory /Gustatory Behavioral study: Snail / Earthworm / insect larvae		
	or any other suitable system.		
	12. Associative conditioning		
	13. Knee-jerk and pupillary reflex		
	14. Testing for locating the Blind Spot in the retina		

Course:	Practical 2 (Credits: 04 Practicals/Week: 02)
SLSC6PR2	Paper – III: Fermentation technology & Genetic engineering: a
	Biotechnological approach
	1. Thin layer chromatography of lipids/plant alkaloids/any other suitable
	extract
	2. Bioassay of antibiotic for anti-bacterial activity
	3. Assay of fermentation product:
	(a) Alcohol
	(b) Sugar
	4. Extraction of plasmid DNA& Agarose Gel Electrophoresis of plasmid
	DNA/Restriction Digest with costing of the experiment
	5. Bioinformatics: Sequence annotation, Translation, Sequence alignment
	6. Open-ended projects:
	(a) Home Wine production / Home-Vinegar production from any
	convenient source & assay for fermentation products
	(b) Plant tissue culture: i) Callus production ii) Preparation of protoplasts
	and estimate viability by trypan blue staining
	(c) Growth curve of <i>E coli</i>
	(d) Culturing & biomass estimation of mushroom/ Spirulina /chlorella by
	cell count/dry weight and estimation of percentage total protein.
	11/1 11/1
\	Paper – IV: Environmental Biotechnology
1	1. EC, conductivity,
	2. N/P/K/Sulphates/ Na/ Ca.
	3. Estimation of Co2+ and Ni2+ by colorimetry / spectrophotometry /
	4. Water analysis for physico-chemical characteristics
	5. Estimation of Heavy metal in various samples by titrimetry or spectrometry
	 Potability of the given drinking water sample by MPN.
	 Remote Sensing and GIS : Principles of Remote Sensing and its
	application of Environmental Science. Application of GIS in
	Environmental Management
	8. Collection and Interpretation of weather data/Climatology of Mumbai
	city (Satellite images and statistical analysis of weather data)
	9. Study of effect of a metal toxicity on the heart beat of Daphnia and
	statistical analysis of the same T Test/LC 50 10. Field visit to river/lake and waste water treatment plant
	11. Identification of local plant species as : Ecological indicators, exotic
	species.

Evaluation Scheme

[A] Evaluation scheme for Theory courses: Semester End Examination (SEE) – 100 Marks

[B] Evaluation scheme for Practical courses: Semester End Examination – 50 Marks (Per Paper)

